Normal number constructions for Cantor series with slowly growing bases
Czechoslovak Mathematical Journal, Tome 66 (2016) no. 2, pp. 465-480
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
Let $Q=(q_n)_{n=1}^\infty $ be a sequence of bases with $q_i\ge 2$. In the case when the $q_i$ are slowly growing and satisfy some additional weak conditions, we provide a construction of a number whose $Q$-Cantor series expansion is both $Q$-normal and $Q$-distribution normal. Moreover, this construction will result in a computable number provided we have some additional conditions on the computability of $Q$, and from this construction we can provide computable constructions of numbers with atypical normality properties.
Let $Q=(q_n)_{n=1}^\infty $ be a sequence of bases with $q_i\ge 2$. In the case when the $q_i$ are slowly growing and satisfy some additional weak conditions, we provide a construction of a number whose $Q$-Cantor series expansion is both $Q$-normal and $Q$-distribution normal. Moreover, this construction will result in a computable number provided we have some additional conditions on the computability of $Q$, and from this construction we can provide computable constructions of numbers with atypical normality properties.
DOI :
10.1007/s10587-016-0269-7
Classification :
11A63, 11K16
Keywords: Cantor series; normal number
Keywords: Cantor series; normal number
@article{10_1007_s10587_016_0269_7,
author = {Airey, Dylan and Mance, Bill and Vandehey, Joseph},
title = {Normal number constructions for {Cantor} series with slowly growing bases},
journal = {Czechoslovak Mathematical Journal},
pages = {465--480},
year = {2016},
volume = {66},
number = {2},
doi = {10.1007/s10587-016-0269-7},
mrnumber = {3519615},
zbl = {06604480},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0269-7/}
}
TY - JOUR AU - Airey, Dylan AU - Mance, Bill AU - Vandehey, Joseph TI - Normal number constructions for Cantor series with slowly growing bases JO - Czechoslovak Mathematical Journal PY - 2016 SP - 465 EP - 480 VL - 66 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0269-7/ DO - 10.1007/s10587-016-0269-7 LA - en ID - 10_1007_s10587_016_0269_7 ER -
%0 Journal Article %A Airey, Dylan %A Mance, Bill %A Vandehey, Joseph %T Normal number constructions for Cantor series with slowly growing bases %J Czechoslovak Mathematical Journal %D 2016 %P 465-480 %V 66 %N 2 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0269-7/ %R 10.1007/s10587-016-0269-7 %G en %F 10_1007_s10587_016_0269_7
Airey, Dylan; Mance, Bill; Vandehey, Joseph. Normal number constructions for Cantor series with slowly growing bases. Czechoslovak Mathematical Journal, Tome 66 (2016) no. 2, pp. 465-480. doi: 10.1007/s10587-016-0269-7
Cité par Sources :