Normal number constructions for Cantor series with slowly growing bases
Czechoslovak Mathematical Journal, Tome 66 (2016) no. 2, pp. 465-480
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $Q=(q_n)_{n=1}^\infty $ be a sequence of bases with $q_i\ge 2$. In the case when the $q_i$ are slowly growing and satisfy some additional weak conditions, we provide a construction of a number whose $Q$-Cantor series expansion is both $Q$-normal and $Q$-distribution normal. Moreover, this construction will result in a computable number provided we have some additional conditions on the computability of $Q$, and from this construction we can provide computable constructions of numbers with atypical normality properties.
Let $Q=(q_n)_{n=1}^\infty $ be a sequence of bases with $q_i\ge 2$. In the case when the $q_i$ are slowly growing and satisfy some additional weak conditions, we provide a construction of a number whose $Q$-Cantor series expansion is both $Q$-normal and $Q$-distribution normal. Moreover, this construction will result in a computable number provided we have some additional conditions on the computability of $Q$, and from this construction we can provide computable constructions of numbers with atypical normality properties.
DOI : 10.1007/s10587-016-0269-7
Classification : 11A63, 11K16
Keywords: Cantor series; normal number
@article{10_1007_s10587_016_0269_7,
     author = {Airey, Dylan and Mance, Bill and Vandehey, Joseph},
     title = {Normal number constructions for {Cantor} series with slowly growing bases},
     journal = {Czechoslovak Mathematical Journal},
     pages = {465--480},
     year = {2016},
     volume = {66},
     number = {2},
     doi = {10.1007/s10587-016-0269-7},
     mrnumber = {3519615},
     zbl = {06604480},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0269-7/}
}
TY  - JOUR
AU  - Airey, Dylan
AU  - Mance, Bill
AU  - Vandehey, Joseph
TI  - Normal number constructions for Cantor series with slowly growing bases
JO  - Czechoslovak Mathematical Journal
PY  - 2016
SP  - 465
EP  - 480
VL  - 66
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0269-7/
DO  - 10.1007/s10587-016-0269-7
LA  - en
ID  - 10_1007_s10587_016_0269_7
ER  - 
%0 Journal Article
%A Airey, Dylan
%A Mance, Bill
%A Vandehey, Joseph
%T Normal number constructions for Cantor series with slowly growing bases
%J Czechoslovak Mathematical Journal
%D 2016
%P 465-480
%V 66
%N 2
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0269-7/
%R 10.1007/s10587-016-0269-7
%G en
%F 10_1007_s10587_016_0269_7
Airey, Dylan; Mance, Bill; Vandehey, Joseph. Normal number constructions for Cantor series with slowly growing bases. Czechoslovak Mathematical Journal, Tome 66 (2016) no. 2, pp. 465-480. doi: 10.1007/s10587-016-0269-7

[1] Airey, D., Mance, B.: On the Hausdorff dimension of some sets of numbers defined through the digits of their $Q$-Cantor series expansions. J. Fractal Geom. 3 (2016), 163-186. | DOI | MR

[2] Airey, D., Mance, B.: Normal equivalencies for eventually periodic basic sequences. Indag. Math., New Ser. 26 (2015), 476-484. | DOI | MR | Zbl

[3] Airey, D., Mance, B., Vandehey, J.: Normality preserving operations for Cantor series expansions and associated fractals II. New York J. Math. (electronic only) 21 (2015), 1311-1326. | MR

[4] Altomare, C., Mance, B.: Cantor series constructions contrasting two notions of normality. Monatsh. Math. 164 (2011), 1-22. | DOI | MR | Zbl

[5] Becher, V., Figueira, S., Picchi, R.: Turing's unpublished algorithm for normal numbers. Theor. Comput. Sci. 377 (2007), 126-138. | DOI | MR | Zbl

[6] Cantor, G.: Über die einfachen Zahlensysteme. Zeitschrift für Mathematik und Physik 14 (1869), 121-128 German.

[7] Champernowne, D. G.: The construction of decimals normal in the scale of ten. J. Lond. Math. Soc. 8 (1933), 254-260. | DOI | MR | Zbl

[8] Erdős, P., Rényi, A.: On Cantor's series with convergent $\sum 1/q_n$. Ann. Univ. Sci. Budap. Rolando Eötvös, Sect. Math. 2 (1959), 93-109. | MR | Zbl

[9] Erdős, P., Rényi, A.: Some further statistical properties of the digits in Cantor's series. Acta Math. Acad. Sci. Hung. 10 (1959), 21-29. | DOI | MR | Zbl

[10] Galambos, J.: Representations of Real Numbers by Infinite Series. Lecture Notes in Mathematics 502 Springer, Berlin (1976). | DOI | MR | Zbl

[11] Kuipers, L., Niederreiter, H.: Uniform Distribution of Sequences. Pure and Applied Mathematics John Wiley & Sons, New York (1974). | MR | Zbl

[12] Mance, B.: Number theoretic applications of a class of Cantor series fractal functions I. Acta Math. Hung. 144 (2014), 449-493. | DOI | MR | Zbl

[13] Mance, B.: Construction of normal numbers with respect to the $Q$-Cantor series expansion for certain $Q$. Acta Arith. 148 (2011), 135-152. | MR | Zbl

[14] Rényi, A.: Probabilistic methods in number theory. Proc. Int. Congr. Math. (1958), 529-539. | MR

[15] Rényi, A.: On the distribution of the digits in Cantor's series. 7 Mat. Lapok (1956), 77-100 Hungarian. Russian, English summaries. | MR | Zbl

[16] Rényi, A.: On a new axiomatic theory of probability. Acta Math. Acad. Sci. Hung. 6 (1955), 285-335. | DOI | MR | Zbl

[17] Sierpiński, W.: Démonstration élémentaire du théorème de M. Borel sur les nombres absolument normaux et détermination effective d'{u}ne tel nombre. Bull. Soc. Math. Fr. 45 (1917), 125-153 French. | DOI | MR

[18] Turán, P.: On the distribution of ``digits'' in Cantor systems. Mat. Lapok 7 (1956), 71-76 Hungarian. Russian, English summaries. | MR | Zbl

[19] Turing, A. M.: Collected Works of A. M. Turing: Pure Mathematics. North-Holland Publishing, Amsterdam J. L. Britton (1992). | MR | Zbl

Cité par Sources :