Extremely primitive groups and linear spaces
Czechoslovak Mathematical Journal, Tome 66 (2016) no. 2, pp. 445-455
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

A non-regular primitive permutation group is called extremely primitive if a point stabilizer acts primitively on each of its nontrivial orbits. Let $\mathcal S$ be a nontrivial finite regular linear space and $G\leq {\rm Aut}(\mathcal S).$ Suppose that $G$ is extremely primitive on points and let rank$(G)$ be the rank of $G$ on points. We prove that rank$(G)\geq 4$ with few exceptions. Moreover, we show that ${\rm Soc}(G)$ is neither a sporadic group nor an alternating group, and $G={\rm PSL}(2,q)$ with $q+1$ a Fermat prime if ${\rm Soc}(G)$ is a finite classical simple group.
A non-regular primitive permutation group is called extremely primitive if a point stabilizer acts primitively on each of its nontrivial orbits. Let $\mathcal S$ be a nontrivial finite regular linear space and $G\leq {\rm Aut}(\mathcal S).$ Suppose that $G$ is extremely primitive on points and let rank$(G)$ be the rank of $G$ on points. We prove that rank$(G)\geq 4$ with few exceptions. Moreover, we show that ${\rm Soc}(G)$ is neither a sporadic group nor an alternating group, and $G={\rm PSL}(2,q)$ with $q+1$ a Fermat prime if ${\rm Soc}(G)$ is a finite classical simple group.
DOI : 10.1007/s10587-016-0267-9
Classification : 05B05, 05B25, 20B15, 20B25
Keywords: linear space; automorphism; point-primitive automorphism group; extremely primitive permutation group
@article{10_1007_s10587_016_0267_9,
     author = {Guan, Haiyan and Zhou, Shenglin},
     title = {Extremely primitive groups and linear spaces},
     journal = {Czechoslovak Mathematical Journal},
     pages = {445--455},
     year = {2016},
     volume = {66},
     number = {2},
     doi = {10.1007/s10587-016-0267-9},
     mrnumber = {3519613},
     zbl = {06604478},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0267-9/}
}
TY  - JOUR
AU  - Guan, Haiyan
AU  - Zhou, Shenglin
TI  - Extremely primitive groups and linear spaces
JO  - Czechoslovak Mathematical Journal
PY  - 2016
SP  - 445
EP  - 455
VL  - 66
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0267-9/
DO  - 10.1007/s10587-016-0267-9
LA  - en
ID  - 10_1007_s10587_016_0267_9
ER  - 
%0 Journal Article
%A Guan, Haiyan
%A Zhou, Shenglin
%T Extremely primitive groups and linear spaces
%J Czechoslovak Mathematical Journal
%D 2016
%P 445-455
%V 66
%N 2
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0267-9/
%R 10.1007/s10587-016-0267-9
%G en
%F 10_1007_s10587_016_0267_9
Guan, Haiyan; Zhou, Shenglin. Extremely primitive groups and linear spaces. Czechoslovak Mathematical Journal, Tome 66 (2016) no. 2, pp. 445-455. doi: 10.1007/s10587-016-0267-9

[1] Biliotti, M., Montinaro, A., Francot, E.: $2$-$(v,k,1)$ designs with a point-primitive rank 3 automorphism group of affine type. Des. Codes Cryptography 76 (2015), 135-171. | DOI | MR

[2] Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system I: The user language. J. Symb. Comput. 24 (1997), 235-265. | DOI | MR | Zbl

[3] Buekenhout, F., Delandtsheer, A., Doyen, J., Kleidman, P. B., Liebeck, M. W., Saxl, J.: Linear spaces with flag-transitive automorphism groups. Geom. Dedicata 36 (1990), 89-94. | MR | Zbl

[4] Burness, T. C., Praeger, C. E., Seress, Á.: Extremely primitive classical groups. J. Pure Appl. Algebra 216 (2012), 1580-1610. | DOI | MR | Zbl

[5] Burness, T. C., Praeger, C. E., Seress, Á.: Extremely primitive sporadic and alternating groups. Bull. Lond. Math. Soc. 44 (2012), 1147-1154. | DOI | MR | Zbl

[6] Camina, A. R., Neumann, P. M., Praeger, C. E.: Alternating groups acting on finite linear spaces. Proc. Lond. Math. Soc. (3) 87 (2003), 29-53. | DOI | MR | Zbl

[7] Clapham, P. C.: Steiner triple systems with block-transitive automorphism groups. Discrete Math. 14 (1976), 121-131. | DOI | MR | Zbl

[8] Delandtsheer, A.: 2-designs with a group transitive on the pairs of intersecting lines. Simon Stevin 66 (1992), 107-112. | MR | Zbl

[9] Devillers, A.: A classification of finite partial linear spaces with a primitive rank 3 automorphism group of grid type. Eur. J. Comb. 29 (2008), 268-272. | DOI | MR | Zbl

[10] Devillers, A.: A classification of finite partial linear spaces with a primitive rank 3 automorphism group of almost simple type. Innov. Incidence Geom. 2 (2005), 129-175. | DOI | MR | Zbl

[11] Higman, D. G., McLaughlin, J. E.: Geometric $ABA$-groups. Ill. J. Math. 5 (1961), 382-- 397. | DOI | MR | Zbl

[12] Huppert, B.: Endliche Gruppen. I. Die Grundlehren der Mathematischen Wissenschaften 134 Springer, Berlin German (1967). | MR | Zbl

[13] Kantor, W. M.: Homogeneous designs and geometric lattices. J. Comb. Theory, Ser. A 38 (1985), 66-74. | DOI | MR | Zbl

[14] Liebeck, M. W.: The classification of finite linear spaces with flag-transitive automorphism groups of affine type. J. Comb. Theory, Ser. A 84 (1998), 196-235. | DOI | MR | Zbl

[15] Mann, A., Praeger, C. E., Seress, Á.: Extremely primitive groups. Groups Geom. Dyn. 1 (2007), 623-660. | DOI | MR | Zbl

[16] Montinaro, A.: $2$-$(v,k,1)$ designs admitting a primitive rank $3$ automorphism group of affine type: the extraspecial and the exceptional classes. J. Comb. Des. 23 481-498 (2015). | DOI | MR | Zbl

[17] Praeger, C. E., Xu, M. Y.: Vertex-primitive graphs of order a product of two distinct primes. J. Comb. Theory, Ser. B 59 (1993), 245-266. | DOI | MR | Zbl

[18] al., R. Wilson et: Atlas of Finite Group Representations. Version 3. Available at http://brauer.maths.qmul.ac.uk/Atlas/v3/

Cité par Sources :