Keywords: harmonic function; Bloch space; Besov space; majorant
@article{10_1007_s10587_016_0265_y,
author = {Fu, Xi and Lu, Bowen},
title = {Some characterizations of harmonic {Bloch} and {Besov} spaces},
journal = {Czechoslovak Mathematical Journal},
pages = {417--430},
year = {2016},
volume = {66},
number = {2},
doi = {10.1007/s10587-016-0265-y},
mrnumber = {3519611},
zbl = {06604476},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0265-y/}
}
TY - JOUR AU - Fu, Xi AU - Lu, Bowen TI - Some characterizations of harmonic Bloch and Besov spaces JO - Czechoslovak Mathematical Journal PY - 2016 SP - 417 EP - 430 VL - 66 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0265-y/ DO - 10.1007/s10587-016-0265-y LA - en ID - 10_1007_s10587_016_0265_y ER -
Fu, Xi; Lu, Bowen. Some characterizations of harmonic Bloch and Besov spaces. Czechoslovak Mathematical Journal, Tome 66 (2016) no. 2, pp. 417-430. doi: 10.1007/s10587-016-0265-y
[1] Chen, S., Ponnusamy, S., Rasila, A.: On characterizations of Bloch-type, Hardy-type and Lipschitz-type spaces. Math. Z. 279 (2015), 163-183. | DOI | MR | Zbl
[2] Choe, B. R., Koo, H., Yi, H.: Derivatives of harmonic Bergman and Bloch functions on the ball. J. Math. Anal. Appl. 260 (2001), 100-123. | DOI | MR | Zbl
[3] Choi, E. S., Na, K.: Characterizations of the harmonic Bergman space on the ball. J. Math. Anal. Appl. 353 (2009), 375-385. | DOI | MR | Zbl
[4] Dyakonov, K. M.: Equivalent norms on Lipschitz-type spaces of holomorphic functions. Acta Math. 178 (1997), 143-167. | DOI | MR | Zbl
[5] Jevtić, M., Pavlović, M.: On $\cal M$-harmonic Bloch space. Proc. Amer. Math. Soc. 123 (1995), 1385-1392. | DOI | MR | Zbl
[6] Li, S.: Characterizations of Besov spaces in the unit ball. Bull. Korean Math. Soc. 49 (2012), 89-98. | DOI | MR | Zbl
[7] Li, S., Stević, S.: Some characterizations of the Besov space and the $\alpha$-Bloch space. J. Math. Anal. Appl. 346 (2008), 262-273. | DOI | MR | Zbl
[8] Li, S., Wulan, H.: Characterizations of $\alpha$-Bloch spaces on the unit ball. J. Math. Anal. Appl. 343 (2008), 58-63. | DOI | MR | Zbl
[9] Mateljević, M., Vuorinen, M.: On harmonic quasiconformal quasi-isometries. J. Inequal. Appl. 2010 (2010), Article ID 178732, 19 pages. | MR | Zbl
[10] Nowak, M.: Bloch space and Möbius invariant Besov spaces on the unit ball of $\mathbb C^n$. Complex Variable Theory Appl. 44 (2001), 1-12. | DOI | MR
[11] Ren, G., Kähler, U.: Weighted Lipschitz continuity and harmonic Bloch and Besov spaces in the real unit ball. Proc. Edinb. Math. Soc., II. Ser. 48 (2005), 743-755. | DOI | MR | Zbl
[12] Ren, G., Tu, C.: Bloch space in the unit ball of $\mathbb C^n$. Proc. Am. Math. Soc. 133 (2005), 719-726. | DOI | MR
[13] Rudin, W.: Function Theory in the Unit Ball of $\mathbb C^n$. Grundlehren der mathematischen Wissenschaften 241 Springer, New York (1980). | MR
[14] Üreyen, A. E.: An estimate of the oscillation of harmonic reproducing kernels with applications. J. Math. Anal. Appl. 434 538-553 (2016). | DOI | MR | Zbl
[15] Yoneda, R.: A characterization of the harmonic Bloch space and the harmonic Besov spaces by an oscillation. Proc. Edinb. Math. Soc., II. Ser. 45 (2002), 229-239. | DOI | MR | Zbl
[16] Yoneda, R.: Characterizations of Bloch space and Besov spaces by oscillations. Hokkaido Math. J. 29 (2000), 409-451. | DOI | MR | Zbl
[17] Zhao, R.: A characterization of Bloch-type spaces on the unit ball of $\mathbb C^n$. J. Math. Anal. Appl. 330 (2007), 291-297. | DOI | MR | Zbl
[18] Zhu, K.: Spaces of Holomorphic Functions in the Unit Ball. Graduate Texts in Mathematics 226 Springer, New York (2005). | MR | Zbl
Cité par Sources :