Some characterizations of harmonic Bloch and Besov spaces
Czechoslovak Mathematical Journal, Tome 66 (2016) no. 2, pp. 417-430
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The relationship between weighted Lipschitz functions and analytic Bloch spaces has attracted much attention. In this paper, we define harmonic $\omega $-$\alpha $-Bloch space and characterize it in terms of $$ \omega ((1-|x|^2)^\beta (1-|y|^2)^{\alpha - \beta }) \Big | \frac {f(x)-f(y)}{x-y}\Big | $$ and $$ \omega ((1-|x|^2)^\beta (1-|y|^2)^{\alpha - \beta }) \Big | \frac {f(x)-f(y)}{|x|y-x'}\Big | $$ where $\omega $ is a majorant. Similar results are extended to harmonic little $\omega $-$\alpha $-Bloch and Besov spaces. Our results are generalizations of the corresponding ones in G. Ren, U. Kähler (2005).
The relationship between weighted Lipschitz functions and analytic Bloch spaces has attracted much attention. In this paper, we define harmonic $\omega $-$\alpha $-Bloch space and characterize it in terms of $$ \omega ((1-|x|^2)^\beta (1-|y|^2)^{\alpha - \beta }) \Big | \frac {f(x)-f(y)}{x-y}\Big | $$ and $$ \omega ((1-|x|^2)^\beta (1-|y|^2)^{\alpha - \beta }) \Big | \frac {f(x)-f(y)}{|x|y-x'}\Big | $$ where $\omega $ is a majorant. Similar results are extended to harmonic little $\omega $-$\alpha $-Bloch and Besov spaces. Our results are generalizations of the corresponding ones in G. Ren, U. Kähler (2005).
DOI : 10.1007/s10587-016-0265-y
Classification : 30C20, 31B05, 32A18
Keywords: harmonic function; Bloch space; Besov space; majorant
@article{10_1007_s10587_016_0265_y,
     author = {Fu, Xi and Lu, Bowen},
     title = {Some characterizations of harmonic {Bloch} and {Besov} spaces},
     journal = {Czechoslovak Mathematical Journal},
     pages = {417--430},
     year = {2016},
     volume = {66},
     number = {2},
     doi = {10.1007/s10587-016-0265-y},
     mrnumber = {3519611},
     zbl = {06604476},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0265-y/}
}
TY  - JOUR
AU  - Fu, Xi
AU  - Lu, Bowen
TI  - Some characterizations of harmonic Bloch and Besov spaces
JO  - Czechoslovak Mathematical Journal
PY  - 2016
SP  - 417
EP  - 430
VL  - 66
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0265-y/
DO  - 10.1007/s10587-016-0265-y
LA  - en
ID  - 10_1007_s10587_016_0265_y
ER  - 
%0 Journal Article
%A Fu, Xi
%A Lu, Bowen
%T Some characterizations of harmonic Bloch and Besov spaces
%J Czechoslovak Mathematical Journal
%D 2016
%P 417-430
%V 66
%N 2
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0265-y/
%R 10.1007/s10587-016-0265-y
%G en
%F 10_1007_s10587_016_0265_y
Fu, Xi; Lu, Bowen. Some characterizations of harmonic Bloch and Besov spaces. Czechoslovak Mathematical Journal, Tome 66 (2016) no. 2, pp. 417-430. doi: 10.1007/s10587-016-0265-y

[1] Chen, S., Ponnusamy, S., Rasila, A.: On characterizations of Bloch-type, Hardy-type and Lipschitz-type spaces. Math. Z. 279 (2015), 163-183. | DOI | MR | Zbl

[2] Choe, B. R., Koo, H., Yi, H.: Derivatives of harmonic Bergman and Bloch functions on the ball. J. Math. Anal. Appl. 260 (2001), 100-123. | DOI | MR | Zbl

[3] Choi, E. S., Na, K.: Characterizations of the harmonic Bergman space on the ball. J. Math. Anal. Appl. 353 (2009), 375-385. | DOI | MR | Zbl

[4] Dyakonov, K. M.: Equivalent norms on Lipschitz-type spaces of holomorphic functions. Acta Math. 178 (1997), 143-167. | DOI | MR | Zbl

[5] Jevtić, M., Pavlović, M.: On $\cal M$-harmonic Bloch space. Proc. Amer. Math. Soc. 123 (1995), 1385-1392. | DOI | MR | Zbl

[6] Li, S.: Characterizations of Besov spaces in the unit ball. Bull. Korean Math. Soc. 49 (2012), 89-98. | DOI | MR | Zbl

[7] Li, S., Stević, S.: Some characterizations of the Besov space and the $\alpha$-Bloch space. J. Math. Anal. Appl. 346 (2008), 262-273. | DOI | MR | Zbl

[8] Li, S., Wulan, H.: Characterizations of $\alpha$-Bloch spaces on the unit ball. J. Math. Anal. Appl. 343 (2008), 58-63. | DOI | MR | Zbl

[9] Mateljević, M., Vuorinen, M.: On harmonic quasiconformal quasi-isometries. J. Inequal. Appl. 2010 (2010), Article ID 178732, 19 pages. | MR | Zbl

[10] Nowak, M.: Bloch space and Möbius invariant Besov spaces on the unit ball of $\mathbb C^n$. Complex Variable Theory Appl. 44 (2001), 1-12. | DOI | MR

[11] Ren, G., Kähler, U.: Weighted Lipschitz continuity and harmonic Bloch and Besov spaces in the real unit ball. Proc. Edinb. Math. Soc., II. Ser. 48 (2005), 743-755. | DOI | MR | Zbl

[12] Ren, G., Tu, C.: Bloch space in the unit ball of $\mathbb C^n$. Proc. Am. Math. Soc. 133 (2005), 719-726. | DOI | MR

[13] Rudin, W.: Function Theory in the Unit Ball of $\mathbb C^n$. Grundlehren der mathematischen Wissenschaften 241 Springer, New York (1980). | MR

[14] Üreyen, A. E.: An estimate of the oscillation of harmonic reproducing kernels with applications. J. Math. Anal. Appl. 434 538-553 (2016). | DOI | MR | Zbl

[15] Yoneda, R.: A characterization of the harmonic Bloch space and the harmonic Besov spaces by an oscillation. Proc. Edinb. Math. Soc., II. Ser. 45 (2002), 229-239. | DOI | MR | Zbl

[16] Yoneda, R.: Characterizations of Bloch space and Besov spaces by oscillations. Hokkaido Math. J. 29 (2000), 409-451. | DOI | MR | Zbl

[17] Zhao, R.: A characterization of Bloch-type spaces on the unit ball of $\mathbb C^n$. J. Math. Anal. Appl. 330 (2007), 291-297. | DOI | MR | Zbl

[18] Zhu, K.: Spaces of Holomorphic Functions in the Unit Ball. Graduate Texts in Mathematics 226 Springer, New York (2005). | MR | Zbl

Cité par Sources :