On the $k$-polygonal numbers and the mean value of Dedekind sums
Czechoslovak Mathematical Journal, Tome 66 (2016) no. 2, pp. 409-415
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
For any positive integer $k\geq 3$, it is easy to prove that the \mbox {$k$-polygonal} numbers are $a_n(k)= (2n+n(n-1)(k-2))/2$. The main purpose of this paper is, using the properties of Gauss sums and Dedekind sums, the mean square value theorem of Dirichlet \mbox {$L$-functions} and the analytic methods, to study the computational problem of one kind mean value of Dedekind sums $S(a_n(k)\overline {a}_m(k), p)$ for \mbox {$k$-polygonal} numbers with $1\leq m,n\leq p-1$, and give an interesting computational formula for it.
For any positive integer $k\geq 3$, it is easy to prove that the \mbox {$k$-polygonal} numbers are $a_n(k)= (2n+n(n-1)(k-2))/2$. The main purpose of this paper is, using the properties of Gauss sums and Dedekind sums, the mean square value theorem of Dirichlet \mbox {$L$-functions} and the analytic methods, to study the computational problem of one kind mean value of Dedekind sums $S(a_n(k)\overline {a}_m(k), p)$ for \mbox {$k$-polygonal} numbers with $1\leq m,n\leq p-1$, and give an interesting computational formula for it.
DOI :
10.1007/s10587-016-0264-z
Classification :
11L05, 11L10
Keywords: Dedekind sums; mean value; computational problem; $k$-polygonal number; analytic method
Keywords: Dedekind sums; mean value; computational problem; $k$-polygonal number; analytic method
@article{10_1007_s10587_016_0264_z,
author = {Guo, Jing and Li, Xiaoxue},
title = {On the $k$-polygonal numbers and the mean value of {Dedekind} sums},
journal = {Czechoslovak Mathematical Journal},
pages = {409--415},
year = {2016},
volume = {66},
number = {2},
doi = {10.1007/s10587-016-0264-z},
mrnumber = {3519610},
zbl = {06604475},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0264-z/}
}
TY - JOUR AU - Guo, Jing AU - Li, Xiaoxue TI - On the $k$-polygonal numbers and the mean value of Dedekind sums JO - Czechoslovak Mathematical Journal PY - 2016 SP - 409 EP - 415 VL - 66 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0264-z/ DO - 10.1007/s10587-016-0264-z LA - en ID - 10_1007_s10587_016_0264_z ER -
%0 Journal Article %A Guo, Jing %A Li, Xiaoxue %T On the $k$-polygonal numbers and the mean value of Dedekind sums %J Czechoslovak Mathematical Journal %D 2016 %P 409-415 %V 66 %N 2 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0264-z/ %R 10.1007/s10587-016-0264-z %G en %F 10_1007_s10587_016_0264_z
Guo, Jing; Li, Xiaoxue. On the $k$-polygonal numbers and the mean value of Dedekind sums. Czechoslovak Mathematical Journal, Tome 66 (2016) no. 2, pp. 409-415. doi: 10.1007/s10587-016-0264-z
Cité par Sources :