On the diameter of the intersection graph of a finite simple group
Czechoslovak Mathematical Journal, Tome 66 (2016) no. 2, pp. 365-370
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $G$ be a finite group. The intersection graph $\Delta _G$ of $G$ is an undirected graph without loops and multiple edges defined as follows: the vertex set is the set of all proper nontrivial subgroups of $G$, and two distinct vertices $X$ and $Y$ are adjacent if $X\cap Y\ne 1$, where $1$ denotes the trivial subgroup of order $1$. A question was posed by Shen (2010) whether the diameters of intersection graphs of finite non-abelian simple groups have an upper bound. We answer the question and show that the diameters of intersection graphs of finite non-abelian simple groups have an upper bound $28$. In particular, the intersection graph of a finite non-abelian simple group is connected.
DOI :
10.1007/s10587-016-0261-2
Classification :
05C25, 20E32
Keywords: intersection graph; finite simple group; diameter
Keywords: intersection graph; finite simple group; diameter
@article{10_1007_s10587_016_0261_2,
author = {Ma, Xuanlong},
title = {On the diameter of the intersection graph of a finite simple group},
journal = {Czechoslovak Mathematical Journal},
pages = {365--370},
publisher = {mathdoc},
volume = {66},
number = {2},
year = {2016},
doi = {10.1007/s10587-016-0261-2},
mrnumber = {3519607},
zbl = {06604472},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0261-2/}
}
TY - JOUR AU - Ma, Xuanlong TI - On the diameter of the intersection graph of a finite simple group JO - Czechoslovak Mathematical Journal PY - 2016 SP - 365 EP - 370 VL - 66 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0261-2/ DO - 10.1007/s10587-016-0261-2 LA - en ID - 10_1007_s10587_016_0261_2 ER -
%0 Journal Article %A Ma, Xuanlong %T On the diameter of the intersection graph of a finite simple group %J Czechoslovak Mathematical Journal %D 2016 %P 365-370 %V 66 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0261-2/ %R 10.1007/s10587-016-0261-2 %G en %F 10_1007_s10587_016_0261_2
Ma, Xuanlong. On the diameter of the intersection graph of a finite simple group. Czechoslovak Mathematical Journal, Tome 66 (2016) no. 2, pp. 365-370. doi: 10.1007/s10587-016-0261-2
Cité par Sources :