A short note on $L^q$ theory for Stokes problem with a pressure-dependent viscosity
Czechoslovak Mathematical Journal, Tome 66 (2016) no. 2, pp. 317-329
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We study higher local integrability of a weak solution to the steady Stokes problem. We consider the case of a pressure- and shear-rate-dependent viscosity, i.e., the elliptic part of the Stokes problem is assumed to be nonlinear and it depends on $p$ and on the symmetric part of a gradient of $u$, namely, it is represented by a stress tensor $T(Du,p):=\nu (p,|D|^2)D$ which satisfies $r$-growth condition with $r\in (1,2]$. In order to get the main result, we use Calderón-Zygmund theory and the method which was presented for example in the paper Caffarelli, Peral (1998).
We study higher local integrability of a weak solution to the steady Stokes problem. We consider the case of a pressure- and shear-rate-dependent viscosity, i.e., the elliptic part of the Stokes problem is assumed to be nonlinear and it depends on $p$ and on the symmetric part of a gradient of $u$, namely, it is represented by a stress tensor $T(Du,p):=\nu (p,|D|^2)D$ which satisfies $r$-growth condition with $r\in (1,2]$. In order to get the main result, we use Calderón-Zygmund theory and the method which was presented for example in the paper Caffarelli, Peral (1998).
DOI : 10.1007/s10587-016-0258-x
Classification : 35B65, 35Q35, 76D03
Keywords: Stokes problem; $L^q$ theory; pressure-dependent viscosity
@article{10_1007_s10587_016_0258_x,
     author = {M\'acha, V\'aclav},
     title = {A short note on $L^q$ theory for {Stokes} problem with a pressure-dependent viscosity},
     journal = {Czechoslovak Mathematical Journal},
     pages = {317--329},
     year = {2016},
     volume = {66},
     number = {2},
     doi = {10.1007/s10587-016-0258-x},
     mrnumber = {3519604},
     zbl = {06604469},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0258-x/}
}
TY  - JOUR
AU  - Mácha, Václav
TI  - A short note on $L^q$ theory for Stokes problem with a pressure-dependent viscosity
JO  - Czechoslovak Mathematical Journal
PY  - 2016
SP  - 317
EP  - 329
VL  - 66
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0258-x/
DO  - 10.1007/s10587-016-0258-x
LA  - en
ID  - 10_1007_s10587_016_0258_x
ER  - 
%0 Journal Article
%A Mácha, Václav
%T A short note on $L^q$ theory for Stokes problem with a pressure-dependent viscosity
%J Czechoslovak Mathematical Journal
%D 2016
%P 317-329
%V 66
%N 2
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0258-x/
%R 10.1007/s10587-016-0258-x
%G en
%F 10_1007_s10587_016_0258_x
Mácha, Václav. A short note on $L^q$ theory for Stokes problem with a pressure-dependent viscosity. Czechoslovak Mathematical Journal, Tome 66 (2016) no. 2, pp. 317-329. doi: 10.1007/s10587-016-0258-x

[1] Amrouche, C., Girault, V.: Decomposition of vector spaces and application to the Stokes problem in arbitrary dimension. Czech. Math. J. 44 (1994), 109-140. | MR | Zbl

[2] Bridgman, P. W.: The Physics of High Pressure. MacMillan, New York (1931).

[3] Bulíček, M., Fišerová, V.: Existence theory for steady flows of fluids with pressure and shear rate dependent viscosity, for low values of the power-law index. Z. Anal. Anwend. 28 (2009), 349-371. | DOI | MR | Zbl

[4] Bulíček, M., Kaplický, P.: Incompressible fluids with shear rate and pressure dependent viscosity: regularity of steady planar flows. Discrete Contin. Dyn. Syst. Ser. S 1 (2008), 41-50. | MR | Zbl

[5] Bulíček, M., Málek, J., Rajagopal, K. R.: Analysis of the flows of incompressible fluids with pressure dependent viscosity fulfilling $\nu(p,\cdot)\rightarrow +\infty$ as $p\rightarrow +\infty$. Czech. Math. J. 59 (2009), 503-528. | DOI | MR

[6] Caffarelli, L. A., Peral, I.: On $W^{1,p}$ estimates for elliptic equations in divergence form. Commun. Pure Appl. Math. 51 (1998), 1-21. | DOI | MR | Zbl

[7] Diening, L., Ettwein, F.: Fractional estimates for non-differentiable elliptic systems with general growth. Forum Math. 20 (2008), 523-556. | DOI | MR | Zbl

[8] Diening, L., Kaplický, P.: $L^q$ theory for a generalized Stokes system. Manuscr. Math. 141 (2013), 333-361. | DOI | MR | Zbl

[9] Diening, L., Růžička, M., Schumacher, K.: A decomposition technique for John domains. Ann. Acad. Sci. Fenn. Math. 35 (2010), 87-114. | DOI | MR | Zbl

[10] Franta, M., Málek, J., Rajagopal, K. R.: On steady flows of fluids with pressure- and shear-dependent viscosities. Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. (2005), 461 651-670. | MR | Zbl

[11] Gazzola, F., Secchi, P.: Some results about stationary Navier-Stokes equations with a pressure-dependent viscosity. Navier-Stokes Equations: Theory and Numerical Methods, Varenna, 1997 R. Salvi 31-37 Pitman Res. Notes Math. Ser. 388 Longman, Harlow (1998). | MR | Zbl

[12] Giusti, E.: Metodi Diretti Nel Calcolo Delle Variazioni. Italian Unione Matematica Italiana, Bologna (1994). | MR | Zbl

[13] Iwaniec, T.: On $L^p$-integrability in PDE's and quasiregular mappings for large exponents. Ann. Acad. Sci. Fenn. Ser. A I, Math. 7 (1982), 301-322. | DOI | MR | Zbl

[14] Knauf, S., Frei, S., Richter, T., Rannacher, R.: Towards a complete numerical description of lubricant film dynamics in ball bearings. Comput. Mech. 53 (2014), 239-255. | DOI | MR

[15] Lanzendörfer, M.: On steady inner flows of an incompressible fluid with the viscosity depending on the pressure and the shear rate. Nonlinear Anal., Real World Appl. 10 (2009), 1943-1954. | MR | Zbl

[16] Lanzendörfer, M.: Numerical Simulations of the Flow in the Journal Bearing. Master's Thesis. Charles University in Prague, Faculty of Mathematics and Physics (2003).

[17] Lanzendörfer, M., Stebel, J.: On pressure boundary conditions for steady flows of incompressible fluids with pressure and shear rate dependent viscosities. Appl. Math., Praha 56 (2011), 265-285. | DOI | MR | Zbl

[18] Mácha, V.: Partial regularity of solution to generalized Navier-Stokes problem. Cent. Eur. J. Math. 12 (2014), 1460-1483. | MR | Zbl

[19] Mácha, V., Tichý, J.: Higher integrability of solution to generalized Stokes system under perfect slip boundary conditions. J. Math. Fluid Mech. 16 (2014), 823-845. | DOI | MR

[20] Málek, J.: Mathematical properties of flows of incompressible power-law-like fluids that are described by implicit constitutive relations. Electron. Trans. Numer. Anal. 31 (2008), 110-125. | MR | Zbl

[21] Málek, J., Mingione, G., Stará, J.: Fluids with Pressure Dependent Viscosity, Partial Regularity of Steady Flows. F. Dumortier, et al. Equadiff 2003. Proc. Int. Conf. Differential Equations World Sci. Publ., Hackensack 380-385 (2005). | MR | Zbl

[22] Málek, J., Nečas, J., Rajagopal, K. R.: Global analysis of the flows of fluids with pressure-dependent viscosities. Arch. Ration. Mech. Anal. 165 (2002), 243-269. | DOI | MR | Zbl

[23] Roubíček, T.: Nonlinear Partial Differential Equations with Applications. International Series of Numerical Mathematics 153 Birkhäuser, Basel (2005). | MR | Zbl

Cité par Sources :