Classification of rings with toroidal Jacobson graph
Czechoslovak Mathematical Journal, Tome 66 (2016) no. 2, pp. 307-316
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $R$ be a commutative ring with nonzero identity and $J(R)$ the Jacobson radical of $R$. The Jacobson graph of $R$, denoted by $\mathfrak J_R$, is defined as the graph with vertex set $R\setminus J(R)$ such that two distinct vertices $x$ and $y$ are adjacent if and only if $1-xy$ is not a unit of $R$. The genus of a simple graph $G$ is the smallest nonnegative integer $n$ such that $G$ can be embedded into an orientable surface $S_n$. In this paper, we investigate the genus number of the compact Riemann surface in which $\mathfrak J_R$ can be embedded and explicitly determine all finite commutative rings $R$ (up to isomorphism) such that $\mathfrak J_R$ is toroidal.
DOI :
10.1007/s10587-016-0257-y
Classification :
05C10, 05C25, 13M05
Keywords: planar graph; genus of a graph; local ring; nilpotent element; Jacobson graph
Keywords: planar graph; genus of a graph; local ring; nilpotent element; Jacobson graph
@article{10_1007_s10587_016_0257_y,
author = {Selvakumar, Krishnan and Subajini, Manoharan},
title = {Classification of rings with toroidal {Jacobson} graph},
journal = {Czechoslovak Mathematical Journal},
pages = {307--316},
publisher = {mathdoc},
volume = {66},
number = {2},
year = {2016},
doi = {10.1007/s10587-016-0257-y},
mrnumber = {3519603},
zbl = {06604468},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0257-y/}
}
TY - JOUR AU - Selvakumar, Krishnan AU - Subajini, Manoharan TI - Classification of rings with toroidal Jacobson graph JO - Czechoslovak Mathematical Journal PY - 2016 SP - 307 EP - 316 VL - 66 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0257-y/ DO - 10.1007/s10587-016-0257-y LA - en ID - 10_1007_s10587_016_0257_y ER -
%0 Journal Article %A Selvakumar, Krishnan %A Subajini, Manoharan %T Classification of rings with toroidal Jacobson graph %J Czechoslovak Mathematical Journal %D 2016 %P 307-316 %V 66 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0257-y/ %R 10.1007/s10587-016-0257-y %G en %F 10_1007_s10587_016_0257_y
Selvakumar, Krishnan; Subajini, Manoharan. Classification of rings with toroidal Jacobson graph. Czechoslovak Mathematical Journal, Tome 66 (2016) no. 2, pp. 307-316. doi: 10.1007/s10587-016-0257-y
Cité par Sources :