Classification of rings with toroidal Jacobson graph
Czechoslovak Mathematical Journal, Tome 66 (2016) no. 2, pp. 307-316
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $R$ be a commutative ring with nonzero identity and $J(R)$ the Jacobson radical of $R$. The Jacobson graph of $R$, denoted by $\mathfrak J_R$, is defined as the graph with vertex set $R\setminus J(R)$ such that two distinct vertices $x$ and $y$ are adjacent if and only if $1-xy$ is not a unit of $R$. The genus of a simple graph $G$ is the smallest nonnegative integer $n$ such that $G$ can be embedded into an orientable surface $S_n$. In this paper, we investigate the genus number of the compact Riemann surface in which $\mathfrak J_R$ can be embedded and explicitly determine all finite commutative rings $R$ (up to isomorphism) such that $\mathfrak J_R$ is toroidal.
Let $R$ be a commutative ring with nonzero identity and $J(R)$ the Jacobson radical of $R$. The Jacobson graph of $R$, denoted by $\mathfrak J_R$, is defined as the graph with vertex set $R\setminus J(R)$ such that two distinct vertices $x$ and $y$ are adjacent if and only if $1-xy$ is not a unit of $R$. The genus of a simple graph $G$ is the smallest nonnegative integer $n$ such that $G$ can be embedded into an orientable surface $S_n$. In this paper, we investigate the genus number of the compact Riemann surface in which $\mathfrak J_R$ can be embedded and explicitly determine all finite commutative rings $R$ (up to isomorphism) such that $\mathfrak J_R$ is toroidal.
DOI : 10.1007/s10587-016-0257-y
Classification : 05C10, 05C25, 13M05
Keywords: planar graph; genus of a graph; local ring; nilpotent element; Jacobson graph
@article{10_1007_s10587_016_0257_y,
     author = {Selvakumar, Krishnan and Subajini, Manoharan},
     title = {Classification of rings with toroidal {Jacobson} graph},
     journal = {Czechoslovak Mathematical Journal},
     pages = {307--316},
     year = {2016},
     volume = {66},
     number = {2},
     doi = {10.1007/s10587-016-0257-y},
     mrnumber = {3519603},
     zbl = {06604468},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0257-y/}
}
TY  - JOUR
AU  - Selvakumar, Krishnan
AU  - Subajini, Manoharan
TI  - Classification of rings with toroidal Jacobson graph
JO  - Czechoslovak Mathematical Journal
PY  - 2016
SP  - 307
EP  - 316
VL  - 66
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0257-y/
DO  - 10.1007/s10587-016-0257-y
LA  - en
ID  - 10_1007_s10587_016_0257_y
ER  - 
%0 Journal Article
%A Selvakumar, Krishnan
%A Subajini, Manoharan
%T Classification of rings with toroidal Jacobson graph
%J Czechoslovak Mathematical Journal
%D 2016
%P 307-316
%V 66
%N 2
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0257-y/
%R 10.1007/s10587-016-0257-y
%G en
%F 10_1007_s10587_016_0257_y
Selvakumar, Krishnan; Subajini, Manoharan. Classification of rings with toroidal Jacobson graph. Czechoslovak Mathematical Journal, Tome 66 (2016) no. 2, pp. 307-316. doi: 10.1007/s10587-016-0257-y

[1] Akbari, S., Maimani, H. R., Yassemi, S.: When a zero-divisor graph is planar or a complete $r$-partite graph. J. Algebra 270 (2003), 169-180. | DOI | MR | Zbl

[2] Anderson, D. F., Badawi, A.: The total graph of a commutative ring. J. Algebra 320 (2008), 2706-2719. | DOI | MR | Zbl

[3] Anderson, D. F., Frazier, A., Lauve, A., Livingston, P. S.: The zero-divisor graph of a commutative ring II. Ideal Theoretic Methods in Commutative Algebra. Proc. Conf. in Honor of Prof. J. A. Huckaba's Retirement, University of Missouri, Columbia Lecture Notes Pure Appl. Math. 220 Marcel Dekker, New York (2001), 61-72. | MR | Zbl

[4] Anderson, D. F., Livingston, P. S.: The zero-divisor graph of a commutative ring. J. Algebra 217 (1999), 434-447. | DOI | MR | Zbl

[5] Ashrafi, N., Maimani, H. R., Pournaki, M. R., Yassemi, S.: Unit graphs associated with rings. Comm. Algebra 38 (2010), 2851-2871. | DOI | MR | Zbl

[6] Asir, T., Chelvam, T. Tamizh: On the genus of generalized unit and unitary Cayley graphs of a commutative ring. Acta Math. Hungar. 142 (2014), 444-458. | DOI | MR

[7] Atiyah, M. F., Macdonald, I. G.: Introduction to Commutative Algebra. Addison-Wesley, London (1969). | MR | Zbl

[8] Azimi, A., Erfanian, A., Farrokhi, M.: The Jacobson graph of commutative rings. J. Algebra Appl. 12 Paper No. 1250179, 18 pages (2013). | DOI | MR | Zbl

[9] Battle, J., Harary, F., Kodama, Y., Youngs, J. W. T.: Additivity of the genus of a graph. Bull. Am. Math. Soc. 68 (1962), 565-568. | DOI | MR | Zbl

[10] Beck, I.: Coloring of commutative rings. J. Algebra 116 (1988), 208-226. | DOI | MR | Zbl

[11] Belshoff, R., Chapman, J.: Planar zero-divisor graphs. J. Algebra 316 (2007), 471-480. | DOI | MR | Zbl

[12] Bloomfield, N., Wickham, C.: Local rings with genus two zero divisor graph. Commun. Algebra 38 (2010), 2965-2980. | DOI | MR | Zbl

[13] Chen, P.: A kind of graph structure of rings. Algebra Colloq. 10 (2003), 229-238. | MR | Zbl

[14] Chiang-Hsieh, H. J., Smith, N. O., Wang, H. J.: Commutative rings with toroidal zero-divisor graphs. Houston J. Math. 36 (2010), 1-31. | MR | Zbl

[15] Gagarin, A., Kocay, W.: Embedding graphs containing $K_5$-subdivisions. Ars Comb. 64 (2002), 33-49. | MR

[16] Kaplansky, I.: Commutative Rings. University of Chicago Press Chicago (1974). | MR | Zbl

[17] Khashyarmanesh, K., Khorsandi, M. R.: A generalization of the unit and unitary Cayley graphs of a commutative ring. Acta Math. Hung. 137 (2012), 242-253. | DOI | MR | Zbl

[18] Li, A., Li, Q.: A kind of graph structure on von-Neumann regular rings. Int. J. Algebra 4 (2010), 291-302. | MR | Zbl

[19] Maimani, H. R., Wickham, C., Yassemi, S.: Rings whose total graphs have genus at most one. Rocky Mt. J. Math. 42 (2012), 1551-1560. | DOI | MR | Zbl

[20] Smith, N. O.: Planar zero-divisor graphs. Int. J. Commut. Rings 2 (2003), 177-186. | MR | Zbl

[21] Wang, H. J.: Zero-divisor graphs of genus one. J. Algebra 304 (2006), 666-678. | DOI | MR | Zbl

[22] White, A. T.: Graphs, Groups and Surfaces. North-Holland Mathematics Studies 8 North-Holland, Amsterdam (1973). | MR | Zbl

[23] Wickham, C.: Classification of rings with genus one zero-divisor graphs. Commun. Algebra 36 (2008), 325-345. | DOI | MR | Zbl

Cité par Sources :