Keywords: planar graph; genus of a graph; local ring; nilpotent element; Jacobson graph
@article{10_1007_s10587_016_0257_y,
author = {Selvakumar, Krishnan and Subajini, Manoharan},
title = {Classification of rings with toroidal {Jacobson} graph},
journal = {Czechoslovak Mathematical Journal},
pages = {307--316},
year = {2016},
volume = {66},
number = {2},
doi = {10.1007/s10587-016-0257-y},
mrnumber = {3519603},
zbl = {06604468},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0257-y/}
}
TY - JOUR AU - Selvakumar, Krishnan AU - Subajini, Manoharan TI - Classification of rings with toroidal Jacobson graph JO - Czechoslovak Mathematical Journal PY - 2016 SP - 307 EP - 316 VL - 66 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0257-y/ DO - 10.1007/s10587-016-0257-y LA - en ID - 10_1007_s10587_016_0257_y ER -
%0 Journal Article %A Selvakumar, Krishnan %A Subajini, Manoharan %T Classification of rings with toroidal Jacobson graph %J Czechoslovak Mathematical Journal %D 2016 %P 307-316 %V 66 %N 2 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0257-y/ %R 10.1007/s10587-016-0257-y %G en %F 10_1007_s10587_016_0257_y
Selvakumar, Krishnan; Subajini, Manoharan. Classification of rings with toroidal Jacobson graph. Czechoslovak Mathematical Journal, Tome 66 (2016) no. 2, pp. 307-316. doi: 10.1007/s10587-016-0257-y
[1] Akbari, S., Maimani, H. R., Yassemi, S.: When a zero-divisor graph is planar or a complete $r$-partite graph. J. Algebra 270 (2003), 169-180. | DOI | MR | Zbl
[2] Anderson, D. F., Badawi, A.: The total graph of a commutative ring. J. Algebra 320 (2008), 2706-2719. | DOI | MR | Zbl
[3] Anderson, D. F., Frazier, A., Lauve, A., Livingston, P. S.: The zero-divisor graph of a commutative ring II. Ideal Theoretic Methods in Commutative Algebra. Proc. Conf. in Honor of Prof. J. A. Huckaba's Retirement, University of Missouri, Columbia Lecture Notes Pure Appl. Math. 220 Marcel Dekker, New York (2001), 61-72. | MR | Zbl
[4] Anderson, D. F., Livingston, P. S.: The zero-divisor graph of a commutative ring. J. Algebra 217 (1999), 434-447. | DOI | MR | Zbl
[5] Ashrafi, N., Maimani, H. R., Pournaki, M. R., Yassemi, S.: Unit graphs associated with rings. Comm. Algebra 38 (2010), 2851-2871. | DOI | MR | Zbl
[6] Asir, T., Chelvam, T. Tamizh: On the genus of generalized unit and unitary Cayley graphs of a commutative ring. Acta Math. Hungar. 142 (2014), 444-458. | DOI | MR
[7] Atiyah, M. F., Macdonald, I. G.: Introduction to Commutative Algebra. Addison-Wesley, London (1969). | MR | Zbl
[8] Azimi, A., Erfanian, A., Farrokhi, M.: The Jacobson graph of commutative rings. J. Algebra Appl. 12 Paper No. 1250179, 18 pages (2013). | DOI | MR | Zbl
[9] Battle, J., Harary, F., Kodama, Y., Youngs, J. W. T.: Additivity of the genus of a graph. Bull. Am. Math. Soc. 68 (1962), 565-568. | DOI | MR | Zbl
[10] Beck, I.: Coloring of commutative rings. J. Algebra 116 (1988), 208-226. | DOI | MR | Zbl
[11] Belshoff, R., Chapman, J.: Planar zero-divisor graphs. J. Algebra 316 (2007), 471-480. | DOI | MR | Zbl
[12] Bloomfield, N., Wickham, C.: Local rings with genus two zero divisor graph. Commun. Algebra 38 (2010), 2965-2980. | DOI | MR | Zbl
[13] Chen, P.: A kind of graph structure of rings. Algebra Colloq. 10 (2003), 229-238. | MR | Zbl
[14] Chiang-Hsieh, H. J., Smith, N. O., Wang, H. J.: Commutative rings with toroidal zero-divisor graphs. Houston J. Math. 36 (2010), 1-31. | MR | Zbl
[15] Gagarin, A., Kocay, W.: Embedding graphs containing $K_5$-subdivisions. Ars Comb. 64 (2002), 33-49. | MR
[16] Kaplansky, I.: Commutative Rings. University of Chicago Press Chicago (1974). | MR | Zbl
[17] Khashyarmanesh, K., Khorsandi, M. R.: A generalization of the unit and unitary Cayley graphs of a commutative ring. Acta Math. Hung. 137 (2012), 242-253. | DOI | MR | Zbl
[18] Li, A., Li, Q.: A kind of graph structure on von-Neumann regular rings. Int. J. Algebra 4 (2010), 291-302. | MR | Zbl
[19] Maimani, H. R., Wickham, C., Yassemi, S.: Rings whose total graphs have genus at most one. Rocky Mt. J. Math. 42 (2012), 1551-1560. | DOI | MR | Zbl
[20] Smith, N. O.: Planar zero-divisor graphs. Int. J. Commut. Rings 2 (2003), 177-186. | MR | Zbl
[21] Wang, H. J.: Zero-divisor graphs of genus one. J. Algebra 304 (2006), 666-678. | DOI | MR | Zbl
[22] White, A. T.: Graphs, Groups and Surfaces. North-Holland Mathematics Studies 8 North-Holland, Amsterdam (1973). | MR | Zbl
[23] Wickham, C.: Classification of rings with genus one zero-divisor graphs. Commun. Algebra 36 (2008), 325-345. | DOI | MR | Zbl
Cité par Sources :