On the fractional differentiability of the spatial derivatives of weak solutions to nonlinear parabolic systems of higher order
Czechoslovak Mathematical Journal, Tome 66 (2016) no. 2, pp. 293-305
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We are concerned with the problem of differentiability of the derivatives of order $m+1$ of solutions to the “nonlinear basic systems” of the type $$ (-1)^m \sum _{|\alpha | = m}D^{\alpha } A^{\alpha }\big (D^{(m)}u\big )+ \frac {\partial u}{\partial t} = 0 \quad \text {in} \ Q. $$ We are able to show that $$ D^{\alpha }u \in L^2\bigl (-a, 0, H^{\vartheta }\big (B(\sigma ),\mathbb {R}^N\big )\big ), \quad |\alpha |=m+1, $$ for $\vartheta \in (0, {1}/{2})$ and this result suggests that more regularity is not expectable.
We are concerned with the problem of differentiability of the derivatives of order $m+1$ of solutions to the “nonlinear basic systems” of the type $$ (-1)^m \sum _{|\alpha | = m}D^{\alpha } A^{\alpha }\big (D^{(m)}u\big )+ \frac {\partial u}{\partial t} = 0 \quad \text {in} \ Q. $$ We are able to show that $$ D^{\alpha }u \in L^2\bigl (-a, 0, H^{\vartheta }\big (B(\sigma ),\mathbb {R}^N\big )\big ), \quad |\alpha |=m+1, $$ for $\vartheta \in (0, {1}/{2})$ and this result suggests that more regularity is not expectable.
DOI : 10.1007/s10587-016-0256-z
Classification : 35K41, 35R11
Keywords: nonlinear parabolic system; fractional differentiability; spatial derivative; weak solution
@article{10_1007_s10587_016_0256_z,
     author = {Amato, Roberto},
     title = {On the fractional differentiability of the spatial derivatives of weak solutions to nonlinear parabolic systems of higher order},
     journal = {Czechoslovak Mathematical Journal},
     pages = {293--305},
     year = {2016},
     volume = {66},
     number = {2},
     doi = {10.1007/s10587-016-0256-z},
     mrnumber = {3519602},
     zbl = {06604467},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0256-z/}
}
TY  - JOUR
AU  - Amato, Roberto
TI  - On the fractional differentiability of the spatial derivatives of weak solutions to nonlinear parabolic systems of higher order
JO  - Czechoslovak Mathematical Journal
PY  - 2016
SP  - 293
EP  - 305
VL  - 66
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0256-z/
DO  - 10.1007/s10587-016-0256-z
LA  - en
ID  - 10_1007_s10587_016_0256_z
ER  - 
%0 Journal Article
%A Amato, Roberto
%T On the fractional differentiability of the spatial derivatives of weak solutions to nonlinear parabolic systems of higher order
%J Czechoslovak Mathematical Journal
%D 2016
%P 293-305
%V 66
%N 2
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0256-z/
%R 10.1007/s10587-016-0256-z
%G en
%F 10_1007_s10587_016_0256_z
Amato, Roberto. On the fractional differentiability of the spatial derivatives of weak solutions to nonlinear parabolic systems of higher order. Czechoslovak Mathematical Journal, Tome 66 (2016) no. 2, pp. 293-305. doi: 10.1007/s10587-016-0256-z

[1] Amato, R.: Local differentiability for the solutions to basic systems of higher order. Matematiche 42 (1987), 109-119. | MR | Zbl

[2] Campanato, S.: Elliptic Systems in Divergence Form. Interior Regularity. Quaderni, Scuola Normale Superiore, Pisa (1980), Italian. | MR

[3] Campanato, S.: Sulla regolarità delle soluzioni di equazioni differenzialli di tipo ellittico. Editrice Tecnico Scientifica, Pisa (1963), Italian.

[4] Fattorusso, L.: A result of differentiability of nonlinear parabolic systems under monotonicity hypothesis. Rend. Circ. Mat. Palermo, II. Ser. 39 (1990), 412-426 Italian. English summary. | MR | Zbl

[5] Fattorusso, L.: Differentiability of solutions of nonlinear second order parabolic systems with quadratic behaviour. Boll. Unione Mat. Ital., VII. Ser. B 1 (1987), 741-764 Italian. English summary. | MR | Zbl

[6] Fattorusso, L.: New contributions to the differentiability of weak solutions of nonlinear parabolic systems of order $2m$ with quadratic growth. Matematiche 41 (1986), 183-203 Italian. English summary. | MR | Zbl

[7] Fattorusso, L.: On the differentiability of weak solutions of nonlinear second order parabolic equations with quadratic growth. Matematiche 40 (1985), 199-215 Italian. English summary. | MR | Zbl

[8] Fattorusso, L., Marino, M.: Local differentiability of nonlinear parabolic systems of second order with nonlinearity $q\geq 2$. Ric. Mat. 41 (1992), 89-112 Italian. English summary. | MR

[9] Marino, M., Maugeri, A.: Partial Hölder continuity of the spatial derivatives of the solutions to nonlinear parabolic systems with quadratic growth. Rend. Semin. Mat. Univ. Padova 76 (1986), 219-245. | MR | Zbl

[10] Naumann, J.: On the interior differentiability of weak solutions of parabolic systems with quadratic growth nonlinearities. Rend. Semin. Mat. Univ. Padova 83 (1990), 55-70. | MR | Zbl

Cité par Sources :