On the fractional differentiability of the spatial derivatives of weak solutions to nonlinear parabolic systems of higher order
Czechoslovak Mathematical Journal, Tome 66 (2016) no. 2, pp. 293-305
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
We are concerned with the problem of differentiability of the derivatives of order $m+1$ of solutions to the “nonlinear basic systems” of the type $$ (-1)^m \sum _{|\alpha | = m}D^{\alpha } A^{\alpha }\big (D^{(m)}u\big )+ \frac {\partial u}{\partial t} = 0 \quad \text {in} \ Q. $$ We are able to show that $$ D^{\alpha }u \in L^2\bigl (-a, 0, H^{\vartheta }\big (B(\sigma ),\mathbb {R}^N\big )\big ), \quad |\alpha |=m+1, $$ for $\vartheta \in (0, {1}/{2})$ and this result suggests that more regularity is not expectable.
We are concerned with the problem of differentiability of the derivatives of order $m+1$ of solutions to the “nonlinear basic systems” of the type $$ (-1)^m \sum _{|\alpha | = m}D^{\alpha } A^{\alpha }\big (D^{(m)}u\big )+ \frac {\partial u}{\partial t} = 0 \quad \text {in} \ Q. $$ We are able to show that $$ D^{\alpha }u \in L^2\bigl (-a, 0, H^{\vartheta }\big (B(\sigma ),\mathbb {R}^N\big )\big ), \quad |\alpha |=m+1, $$ for $\vartheta \in (0, {1}/{2})$ and this result suggests that more regularity is not expectable.
DOI :
10.1007/s10587-016-0256-z
Classification :
35K41, 35R11
Keywords: nonlinear parabolic system; fractional differentiability; spatial derivative; weak solution
Keywords: nonlinear parabolic system; fractional differentiability; spatial derivative; weak solution
@article{10_1007_s10587_016_0256_z,
author = {Amato, Roberto},
title = {On the fractional differentiability of the spatial derivatives of weak solutions to nonlinear parabolic systems of higher order},
journal = {Czechoslovak Mathematical Journal},
pages = {293--305},
year = {2016},
volume = {66},
number = {2},
doi = {10.1007/s10587-016-0256-z},
mrnumber = {3519602},
zbl = {06604467},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0256-z/}
}
TY - JOUR AU - Amato, Roberto TI - On the fractional differentiability of the spatial derivatives of weak solutions to nonlinear parabolic systems of higher order JO - Czechoslovak Mathematical Journal PY - 2016 SP - 293 EP - 305 VL - 66 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0256-z/ DO - 10.1007/s10587-016-0256-z LA - en ID - 10_1007_s10587_016_0256_z ER -
%0 Journal Article %A Amato, Roberto %T On the fractional differentiability of the spatial derivatives of weak solutions to nonlinear parabolic systems of higher order %J Czechoslovak Mathematical Journal %D 2016 %P 293-305 %V 66 %N 2 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0256-z/ %R 10.1007/s10587-016-0256-z %G en %F 10_1007_s10587_016_0256_z
Amato, Roberto. On the fractional differentiability of the spatial derivatives of weak solutions to nonlinear parabolic systems of higher order. Czechoslovak Mathematical Journal, Tome 66 (2016) no. 2, pp. 293-305. doi: 10.1007/s10587-016-0256-z
Cité par Sources :