Keywords: nonlinear parabolic system; fractional differentiability; spatial derivative; weak solution
@article{10_1007_s10587_016_0256_z,
author = {Amato, Roberto},
title = {On the fractional differentiability of the spatial derivatives of weak solutions to nonlinear parabolic systems of higher order},
journal = {Czechoslovak Mathematical Journal},
pages = {293--305},
year = {2016},
volume = {66},
number = {2},
doi = {10.1007/s10587-016-0256-z},
mrnumber = {3519602},
zbl = {06604467},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0256-z/}
}
TY - JOUR AU - Amato, Roberto TI - On the fractional differentiability of the spatial derivatives of weak solutions to nonlinear parabolic systems of higher order JO - Czechoslovak Mathematical Journal PY - 2016 SP - 293 EP - 305 VL - 66 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0256-z/ DO - 10.1007/s10587-016-0256-z LA - en ID - 10_1007_s10587_016_0256_z ER -
%0 Journal Article %A Amato, Roberto %T On the fractional differentiability of the spatial derivatives of weak solutions to nonlinear parabolic systems of higher order %J Czechoslovak Mathematical Journal %D 2016 %P 293-305 %V 66 %N 2 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0256-z/ %R 10.1007/s10587-016-0256-z %G en %F 10_1007_s10587_016_0256_z
Amato, Roberto. On the fractional differentiability of the spatial derivatives of weak solutions to nonlinear parabolic systems of higher order. Czechoslovak Mathematical Journal, Tome 66 (2016) no. 2, pp. 293-305. doi: 10.1007/s10587-016-0256-z
[1] Amato, R.: Local differentiability for the solutions to basic systems of higher order. Matematiche 42 (1987), 109-119. | MR | Zbl
[2] Campanato, S.: Elliptic Systems in Divergence Form. Interior Regularity. Quaderni, Scuola Normale Superiore, Pisa (1980), Italian. | MR
[3] Campanato, S.: Sulla regolarità delle soluzioni di equazioni differenzialli di tipo ellittico. Editrice Tecnico Scientifica, Pisa (1963), Italian.
[4] Fattorusso, L.: A result of differentiability of nonlinear parabolic systems under monotonicity hypothesis. Rend. Circ. Mat. Palermo, II. Ser. 39 (1990), 412-426 Italian. English summary. | MR | Zbl
[5] Fattorusso, L.: Differentiability of solutions of nonlinear second order parabolic systems with quadratic behaviour. Boll. Unione Mat. Ital., VII. Ser. B 1 (1987), 741-764 Italian. English summary. | MR | Zbl
[6] Fattorusso, L.: New contributions to the differentiability of weak solutions of nonlinear parabolic systems of order $2m$ with quadratic growth. Matematiche 41 (1986), 183-203 Italian. English summary. | MR | Zbl
[7] Fattorusso, L.: On the differentiability of weak solutions of nonlinear second order parabolic equations with quadratic growth. Matematiche 40 (1985), 199-215 Italian. English summary. | MR | Zbl
[8] Fattorusso, L., Marino, M.: Local differentiability of nonlinear parabolic systems of second order with nonlinearity $q\geq 2$. Ric. Mat. 41 (1992), 89-112 Italian. English summary. | MR
[9] Marino, M., Maugeri, A.: Partial Hölder continuity of the spatial derivatives of the solutions to nonlinear parabolic systems with quadratic growth. Rend. Semin. Mat. Univ. Padova 76 (1986), 219-245. | MR | Zbl
[10] Naumann, J.: On the interior differentiability of weak solutions of parabolic systems with quadratic growth nonlinearities. Rend. Semin. Mat. Univ. Padova 83 (1990), 55-70. | MR | Zbl
Cité par Sources :