Automorphisms and generalized skew derivations which are strong commutativity preserving on polynomials in prime and semiprime rings
Czechoslovak Mathematical Journal, Tome 66 (2016) no. 1, pp. 271-292
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $R$ be a prime ring of characteristic different from 2, $Q_r$ its right Martindale quotient ring and $C$ its extended centroid. Suppose that $F$, $G$ are generalized skew derivations of $R$ with the same associated automorphism $\alpha $, and $p(x_1,\ldots ,x_n)$ is a non-central polynomial over $C$ such that $$ [F(x),\alpha (y)]=G([x,y]) $$ for all $x,y \in \{p(r_1,\ldots ,r_n)\colon r_1,\ldots ,r_n \in R\}$. Then there exists $\lambda \in C$ such that $F(x)=G(x)=\lambda \alpha (x)$ for all $x\in R$.
Let $R$ be a prime ring of characteristic different from 2, $Q_r$ its right Martindale quotient ring and $C$ its extended centroid. Suppose that $F$, $G$ are generalized skew derivations of $R$ with the same associated automorphism $\alpha $, and $p(x_1,\ldots ,x_n)$ is a non-central polynomial over $C$ such that $$ [F(x),\alpha (y)]=G([x,y]) $$ for all $x,y \in \{p(r_1,\ldots ,r_n)\colon r_1,\ldots ,r_n \in R\}$. Then there exists $\lambda \in C$ such that $F(x)=G(x)=\lambda \alpha (x)$ for all $x\in R$.
DOI : 10.1007/s10587-016-0255-0
Classification : 16N60, 16W25
Keywords: generalized skew derivation; prime ring
@article{10_1007_s10587_016_0255_0,
     author = {de Filippis, Vincenzo},
     title = {Automorphisms and generalized skew derivations which are strong commutativity preserving on polynomials in prime and semiprime rings},
     journal = {Czechoslovak Mathematical Journal},
     pages = {271--292},
     year = {2016},
     volume = {66},
     number = {1},
     doi = {10.1007/s10587-016-0255-0},
     mrnumber = {3483238},
     zbl = {06587889},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0255-0/}
}
TY  - JOUR
AU  - de Filippis, Vincenzo
TI  - Automorphisms and generalized skew derivations which are strong commutativity preserving on polynomials in prime and semiprime rings
JO  - Czechoslovak Mathematical Journal
PY  - 2016
SP  - 271
EP  - 292
VL  - 66
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0255-0/
DO  - 10.1007/s10587-016-0255-0
LA  - en
ID  - 10_1007_s10587_016_0255_0
ER  - 
%0 Journal Article
%A de Filippis, Vincenzo
%T Automorphisms and generalized skew derivations which are strong commutativity preserving on polynomials in prime and semiprime rings
%J Czechoslovak Mathematical Journal
%D 2016
%P 271-292
%V 66
%N 1
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0255-0/
%R 10.1007/s10587-016-0255-0
%G en
%F 10_1007_s10587_016_0255_0
de Filippis, Vincenzo. Automorphisms and generalized skew derivations which are strong commutativity preserving on polynomials in prime and semiprime rings. Czechoslovak Mathematical Journal, Tome 66 (2016) no. 1, pp. 271-292. doi: 10.1007/s10587-016-0255-0

[1] Arga{ç}, N., Carini, L., Filippis, V. De: An Engel condition with generalized derivations on Lie ideals. Taiwanese J. Math. 12 (2008), 419-433. | DOI | MR | Zbl

[2] Brešar, M., Miers, C. R.: Strong commutativity preserving maps of semiprime rings. Can. Math. Bull. 37 (1994), 457-460. | DOI | MR

[3] Chang, J.-C.: On the identity $h(x)=af(x)+g(x)b$. Taiwanese J. Math. 7 (2003), 103-113. | DOI | MR | Zbl

[4] Chuang, C.-L.: Identities with skew derivations. J. Algebra 224 (2000), 292-335. | DOI | MR

[5] Chuang, C.-L.: Differential identities with automorphisms and antiautomorphisms. II. J. Algebra 160 (1993), 130-171. | DOI | MR

[6] Chuang, C.-L.: Differential identities with automorphisms and antiautomorphisms. I. J. Algebra 149 (1992), 371-404. | DOI | MR

[7] Chuang, C.-L.: GPIs having coefficients in Utumi quotient rings. Proc. Am. Math. Soc. 103 (1988), 723-728. | DOI | MR | Zbl

[8] Chuang, C.-L.: The additive subgroup generated by a polynomial. Isr. J. Math. 59 (1987), 98-106. | DOI | MR

[9] Chuang, C.-L., Lee, T.-K.: Identities with a single skew derivation. J. Algebra 288 (2005), 59-77. | DOI | MR | Zbl

[10] Chuang, C.-L., Lee, T.-K.: Rings with annihilator conditions on multilinear polynomials. Chin. J. Math. 24 (1996), 177-185. | MR

[11] Filippis, V. De: A product of two generalized derivations on polynomials in prime rings. Collect. Math. 61 (2010), 303-322. | DOI | MR | Zbl

[12] Vincenzo, O. M. Di: On the $n$th centralizer of a Lie ideal. Boll. Unione Mat. Ital., VII. Ser. 3-A (1989), 77-85. | MR

[13] Faith, C., Utumi, Y.: On a new proof of Litoff's theorem. Acta Math. Acad. Sci. Hung. 14 (1963), 369-371. | DOI | MR | Zbl

[14] Herstein, I. N.: Topics in Ring Theory. Chicago Lectures in Mathematics The University of Chicago Press, Chicago (1969). | MR | Zbl

[15] Jacobson, N.: PI-Algebras: An Introduction. Lecture Notes in Mathematics 441 Springer, Berlin (1975). | DOI | MR

[16] Jacobson, N.: Structure of Rings. American Mathematical Society Colloquium Publications 37 AMS, Providence (1956). | DOI | MR | Zbl

[17] Lanski, C., Montgomery, S.: Lie structure of prime rings of characteristic 2. Pac. J. Math. 42 (1972), 117-136. | DOI | MR

[18] Lin, J.-S., Liu, C.-K.: Strong commutativity preserving maps on Lie ideals. Linear Algebra Appl. 428 (2008), 1601-1609. | MR | Zbl

[19] Liu, C.-K.: Strong commutativity preserving generalized derivations on right ideals. Monatsh. Math. 166 (2012), 453-465. | DOI | MR | Zbl

[20] Liu, C.-K., Liau, P.-K.: Strong commutativity preserving generalized derivations on Lie ideals. Linear Multilinear Algebra 59 (2011), 905-915. | DOI | MR | Zbl

[21] Ma, J., Xu, X. W., Niu, F. W.: Strong commutativity-preserving generalized derivations on semiprime rings. Acta Math. Sin., Engl. Ser. 24 (2008), 1835-1842. | DOI | MR | Zbl

[22] III, W. S. Martindale: Prime rings satisfying a generalized polynomial identity. J. Algebra 12 (1969), 576-584. | DOI | MR

[23] Posner, E. C.: Derivations in prime rings. Proc. Am. Math. Soc. 8 (1958), 1093-1100. | DOI | MR | Zbl

[24] Wong, T.-L.: Derivations with power-central values on multilinear polynomials. Algebra Colloq. 3 (1996), 369-378. | MR | Zbl

Cité par Sources :