Commutators of Marcinkiewicz integrals on Herz spaces with variable exponent
Czechoslovak Mathematical Journal, Tome 66 (2016) no. 1, pp. 251-269
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $\Omega \in L^s({\mathrm S}^{n-1})$ for $s\geq 1$ be a homogeneous function of degree zero and $b$ a BMO function. The commutator generated by the Marcinkiewicz integral $\mu _\Omega $ and $b$ is defined by \begin {equation*} \displaystyle [b,\mu _\Omega ] (f)(x)=\biggl (\int ^\infty _0\biggl |\int _{|x-y|\leq t} \frac {\Omega (x-y)}{|x-y|^{n-1}}[b(x)-b(y)]f(y) {\rm d} y\bigg |^2\frac {{\rm d} t}{t^3}\bigg )^{1/2}. \end {equation*} In this paper, the author proves the $(L^{p(\cdot )}(\mathbb {R}^{n}),L^{p(\cdot )}(\mathbb {R}^{n}))$-boundedness of the Marcinkiewicz integral operator $\mu _\Omega $ and its commutator $[b,\mu _\Omega ]$ when $p(\cdot )$ satisfies some conditions. Moreover, the author obtains the corresponding result about $\mu _\Omega $ and $[b,\mu _\Omega ]$ on Herz spaces with variable exponent.
DOI :
10.1007/s10587-016-0254-1
Classification :
42B20, 42B35
Keywords: Herz space; variable exponent; commutator; Marcinkiewicz integral
Keywords: Herz space; variable exponent; commutator; Marcinkiewicz integral
@article{10_1007_s10587_016_0254_1,
author = {Wang, Hongbin},
title = {Commutators of {Marcinkiewicz} integrals on {Herz} spaces with variable exponent},
journal = {Czechoslovak Mathematical Journal},
pages = {251--269},
publisher = {mathdoc},
volume = {66},
number = {1},
year = {2016},
doi = {10.1007/s10587-016-0254-1},
mrnumber = {3483237},
zbl = {06587888},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0254-1/}
}
TY - JOUR AU - Wang, Hongbin TI - Commutators of Marcinkiewicz integrals on Herz spaces with variable exponent JO - Czechoslovak Mathematical Journal PY - 2016 SP - 251 EP - 269 VL - 66 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0254-1/ DO - 10.1007/s10587-016-0254-1 LA - en ID - 10_1007_s10587_016_0254_1 ER -
%0 Journal Article %A Wang, Hongbin %T Commutators of Marcinkiewicz integrals on Herz spaces with variable exponent %J Czechoslovak Mathematical Journal %D 2016 %P 251-269 %V 66 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0254-1/ %R 10.1007/s10587-016-0254-1 %G en %F 10_1007_s10587_016_0254_1
Wang, Hongbin. Commutators of Marcinkiewicz integrals on Herz spaces with variable exponent. Czechoslovak Mathematical Journal, Tome 66 (2016) no. 1, pp. 251-269. doi: 10.1007/s10587-016-0254-1
Cité par Sources :