Points with maximal Birkhoff average oscillation
Czechoslovak Mathematical Journal, Tome 66 (2016) no. 1, pp. 223-241
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $f\colon X\to X$ be a continuous map with the specification property on a compact metric space $X$. We introduce the notion of the maximal Birkhoff average oscillation, which is the ``worst'' divergence point for Birkhoff average. By constructing a kind of dynamical Moran subset, we prove that the set of points having maximal Birkhoff average oscillation is residual if it is not empty. As applications, we present the corresponding results for the Birkhoff averages for continuous functions on a repeller and locally maximal hyperbolic set.
Let $f\colon X\to X$ be a continuous map with the specification property on a compact metric space $X$. We introduce the notion of the maximal Birkhoff average oscillation, which is the ``worst'' divergence point for Birkhoff average. By constructing a kind of dynamical Moran subset, we prove that the set of points having maximal Birkhoff average oscillation is residual if it is not empty. As applications, we present the corresponding results for the Birkhoff averages for continuous functions on a repeller and locally maximal hyperbolic set.
DOI : 10.1007/s10587-016-0252-3
Classification : 37C45, 54E52, 54H20
Keywords: irregular set; maximal Birkhoff average oscillation; specification property; residual set
@article{10_1007_s10587_016_0252_3,
     author = {Li, Jinjun and Wu, Min},
     title = {Points with maximal {Birkhoff} average oscillation},
     journal = {Czechoslovak Mathematical Journal},
     pages = {223--241},
     year = {2016},
     volume = {66},
     number = {1},
     doi = {10.1007/s10587-016-0252-3},
     mrnumber = {3483235},
     zbl = {06587886},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0252-3/}
}
TY  - JOUR
AU  - Li, Jinjun
AU  - Wu, Min
TI  - Points with maximal Birkhoff average oscillation
JO  - Czechoslovak Mathematical Journal
PY  - 2016
SP  - 223
EP  - 241
VL  - 66
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0252-3/
DO  - 10.1007/s10587-016-0252-3
LA  - en
ID  - 10_1007_s10587_016_0252_3
ER  - 
%0 Journal Article
%A Li, Jinjun
%A Wu, Min
%T Points with maximal Birkhoff average oscillation
%J Czechoslovak Mathematical Journal
%D 2016
%P 223-241
%V 66
%N 1
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0252-3/
%R 10.1007/s10587-016-0252-3
%G en
%F 10_1007_s10587_016_0252_3
Li, Jinjun; Wu, Min. Points with maximal Birkhoff average oscillation. Czechoslovak Mathematical Journal, Tome 66 (2016) no. 1, pp. 223-241. doi: 10.1007/s10587-016-0252-3

[1] Albeverio, S., Pratsiovytyi, M., Torbin, G.: Topological and fractal properties of real numbers which are not normal. Bull. Sci. Math. 129 (2005), 615-630. | DOI | MR | Zbl

[2] Baek, I.-S., Olsen, L.: Baire category and extremely non-normal points of invariant sets of IFS's. Discrete Contin. Dyn. Syst. 27 (2010), 935-943. | DOI | MR | Zbl

[3] Barreira, L., Li, J., Valls, C.: Irregular sets are residual. Tohoku Math. J. (2) 66 (2014), 471-489. | DOI | MR

[4] Barreira, L., Schmeling, J.: Sets of ``non-typical'' points have full topological entropy and full Hausdorff dimension. Isr. J. Math. 116 (2000), 29-70. | DOI | MR

[5] Bisbas, A., Snigireva, N.: Divergence points and normal numbers. Monatsh. Math. 166 (2012), 341-356. | DOI | MR | Zbl

[6] Bowen, R.: Periodic points and measures for axiom A diffeomorphisms. Trans. Am. Math. Soc. 154 (1971), 377-397. | MR

[7] Buzzi, J.: Specification on the interval. Trans. Am. Math. Soc. 349 (1997), 2737-2754. | DOI | MR

[8] Ercai, C., Küpper, T., Lin, S.: Topological entropy for divergence points. Ergodic Theory Dyn. Syst. 25 (2005), 1173-1208. | MR | Zbl

[9] Denker, M., Grillenberger, C., Sigmund, K.: Ergodic Theory on Compact Spaces. Lecture Notes in Mathematics 527 Springer, Berlin (1976). | MR

[10] Fan, A.-H., Feng, D.-J.: On the distribution of long-term time averages on symbolic space. J. Stat. Phys. 99 (2000), 813-856. | DOI | MR

[11] Fan, A.-H., Feng, D.-J., Wu, J.: Recurrence, dimension and entropy. J. Lond. Math. Soc., (2) 64 (2001), 229-244. | DOI | MR | Zbl

[12] Fan, A., Liao, L., Peyri{è}re, J.: Generic points in systems of specification and Banach valued Birkhoff ergodic average. Discrete Contin. Dyn. Syst. 21 (2008), 1103-1128. | MR | Zbl

[13] Feng, D.-J., Lau, K.-S., Wu, J.: Ergodic limits on the conformal repellers. Adv. Math. 169 (2002), 58-91. | DOI | MR | Zbl

[14] Hyde, J., Laschos, V., Olsen, L., Petrykiewicz, I., Shaw, A.: Iterated Cesàro averages, frequencies of digits, and Baire category. Acta Arith. 144 (2010), 287-293. | MR | Zbl

[15] Katok, A., Hasselblatt, B.: Introduction to the Modern Theory of Dynamical Systems. Encyclopedia of Mathematics and Its Applications 54 Cambridge Univ. Press, Cambridge (1995). | MR | Zbl

[16] Li, J., Li, B.: Hausdorff dimensions of some irregular sets associated with $\beta$-expansions. Sci. China Math. 59 (2016), 445-458. | DOI | MR | Zbl

[17] Li, J., Wu, M.: A note on the rate of returns in random walks. Arch. Math. (Basel) 102 (2014), 493-500. | DOI | MR | Zbl

[18] Li, J., Wu, M.: Generic property of irregular sets in systems satisfying the specification property. Discrete Contin. Dyn. Syst. 34 (2014), 635-645. | MR | Zbl

[19] Li, J., Wu, M.: Divergence points in systems satisfying the specification property. Discrete Contin. Dyn. Syst. 33 (2013), 905-920. | DOI | MR | Zbl

[20] Li, J., Wu, M.: The sets of divergence points of self-similar measures are residual. J. Math. Anal. Appl. 404 (2013), 429-437. | DOI | MR | Zbl

[21] Li, J., Wu, M., Xiong, Y.: Hausdorff dimensions of the divergence points of self-similar measures with the open set condition. Nonlinearity 25 (2012), 93-105. | DOI | MR | Zbl

[22] Olsen, L.: Extremely non-normal numbers. Math. Proc. Camb. Philos. Soc. 137 (2004), 43-53. | DOI | MR | Zbl

[23] Olsen, L.: Multifractal analysis of divergence points of deformed measure theoretical Birkhoff averages. J. Math. Pures Appl. (9) 82 (2003), 1591-1649. | DOI | MR | Zbl

[24] Olsen, L., Winter, S.: Normal and non-normal points of self-similar sets and divergence points of self-similar measures. J. Lond. Math. Soc., (2) 67 (2003), 103-122. | DOI | MR | Zbl

[25] Oxtoby, J. C.: Measure and Category. A Survey of the Analogies between Topological and Measure Spaces. Graduate Texts in Mathematics, Vol. 2 Springer, New York (1980). | MR

[26] Pitskel, B. S.: Topological pressure on noncompact sets. Funct. Anal. Appl. 22 (1988), 240-241 translation from Funkts. Anal. Prilozh. 22 (1988), 83-84. | MR

[27] Pollicott, M., Weiss, H.: Multifractal analysis of Lyapunov exponent for continued fraction and Manneville-Pomeau transformations and applications to Diophantine approximation. Commun. Math. Phys. 207 (1999), 145-171. | DOI | MR

[28] Ruelle, D.: Thermodynamic Formalism. The Mathematical Structures of Equilibrium Stastistical Mechanics. Cambridge Mathematical Library Cambridge University Press, Cambridge (2004). | MR

[29] Šalát, T.: A remark on normal numbers. Rev. Roum. Math. Pures Appl. 11 (1966), 53-56. | MR

[30] Sigmund, K.: On dynamical systems with the specification property. Trans. Am. Math. Soc. 190 (1974), 285-299. | DOI | MR

[31] Takens, F., Verbitskiy, E.: On the variational principle for the topological entropy of certain non-compact sets. Ergodic Theory Dyn. Syst. 23 (2003), 317-348. | MR | Zbl

[32] Thompson, D.: The irregular set for maps with the specification property has full topological pressure. Dyn. Syst. 25 (2010), 25-51. | DOI | MR | Zbl

[33] Volkmann, B.: Gewinnmengen. Arch. Math. 10 German (1959), 235-240. | MR

Cité par Sources :