Keywords: irregular set; maximal Birkhoff average oscillation; specification property; residual set
@article{10_1007_s10587_016_0252_3,
author = {Li, Jinjun and Wu, Min},
title = {Points with maximal {Birkhoff} average oscillation},
journal = {Czechoslovak Mathematical Journal},
pages = {223--241},
year = {2016},
volume = {66},
number = {1},
doi = {10.1007/s10587-016-0252-3},
mrnumber = {3483235},
zbl = {06587886},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0252-3/}
}
TY - JOUR AU - Li, Jinjun AU - Wu, Min TI - Points with maximal Birkhoff average oscillation JO - Czechoslovak Mathematical Journal PY - 2016 SP - 223 EP - 241 VL - 66 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0252-3/ DO - 10.1007/s10587-016-0252-3 LA - en ID - 10_1007_s10587_016_0252_3 ER -
Li, Jinjun; Wu, Min. Points with maximal Birkhoff average oscillation. Czechoslovak Mathematical Journal, Tome 66 (2016) no. 1, pp. 223-241. doi: 10.1007/s10587-016-0252-3
[1] Albeverio, S., Pratsiovytyi, M., Torbin, G.: Topological and fractal properties of real numbers which are not normal. Bull. Sci. Math. 129 (2005), 615-630. | DOI | MR | Zbl
[2] Baek, I.-S., Olsen, L.: Baire category and extremely non-normal points of invariant sets of IFS's. Discrete Contin. Dyn. Syst. 27 (2010), 935-943. | DOI | MR | Zbl
[3] Barreira, L., Li, J., Valls, C.: Irregular sets are residual. Tohoku Math. J. (2) 66 (2014), 471-489. | DOI | MR
[4] Barreira, L., Schmeling, J.: Sets of ``non-typical'' points have full topological entropy and full Hausdorff dimension. Isr. J. Math. 116 (2000), 29-70. | DOI | MR
[5] Bisbas, A., Snigireva, N.: Divergence points and normal numbers. Monatsh. Math. 166 (2012), 341-356. | DOI | MR | Zbl
[6] Bowen, R.: Periodic points and measures for axiom A diffeomorphisms. Trans. Am. Math. Soc. 154 (1971), 377-397. | MR
[7] Buzzi, J.: Specification on the interval. Trans. Am. Math. Soc. 349 (1997), 2737-2754. | DOI | MR
[8] Ercai, C., Küpper, T., Lin, S.: Topological entropy for divergence points. Ergodic Theory Dyn. Syst. 25 (2005), 1173-1208. | MR | Zbl
[9] Denker, M., Grillenberger, C., Sigmund, K.: Ergodic Theory on Compact Spaces. Lecture Notes in Mathematics 527 Springer, Berlin (1976). | MR
[10] Fan, A.-H., Feng, D.-J.: On the distribution of long-term time averages on symbolic space. J. Stat. Phys. 99 (2000), 813-856. | DOI | MR
[11] Fan, A.-H., Feng, D.-J., Wu, J.: Recurrence, dimension and entropy. J. Lond. Math. Soc., (2) 64 (2001), 229-244. | DOI | MR | Zbl
[12] Fan, A., Liao, L., Peyri{è}re, J.: Generic points in systems of specification and Banach valued Birkhoff ergodic average. Discrete Contin. Dyn. Syst. 21 (2008), 1103-1128. | MR | Zbl
[13] Feng, D.-J., Lau, K.-S., Wu, J.: Ergodic limits on the conformal repellers. Adv. Math. 169 (2002), 58-91. | DOI | MR | Zbl
[14] Hyde, J., Laschos, V., Olsen, L., Petrykiewicz, I., Shaw, A.: Iterated Cesàro averages, frequencies of digits, and Baire category. Acta Arith. 144 (2010), 287-293. | MR | Zbl
[15] Katok, A., Hasselblatt, B.: Introduction to the Modern Theory of Dynamical Systems. Encyclopedia of Mathematics and Its Applications 54 Cambridge Univ. Press, Cambridge (1995). | MR | Zbl
[16] Li, J., Li, B.: Hausdorff dimensions of some irregular sets associated with $\beta$-expansions. Sci. China Math. 59 (2016), 445-458. | DOI | MR | Zbl
[17] Li, J., Wu, M.: A note on the rate of returns in random walks. Arch. Math. (Basel) 102 (2014), 493-500. | DOI | MR | Zbl
[18] Li, J., Wu, M.: Generic property of irregular sets in systems satisfying the specification property. Discrete Contin. Dyn. Syst. 34 (2014), 635-645. | MR | Zbl
[19] Li, J., Wu, M.: Divergence points in systems satisfying the specification property. Discrete Contin. Dyn. Syst. 33 (2013), 905-920. | DOI | MR | Zbl
[20] Li, J., Wu, M.: The sets of divergence points of self-similar measures are residual. J. Math. Anal. Appl. 404 (2013), 429-437. | DOI | MR | Zbl
[21] Li, J., Wu, M., Xiong, Y.: Hausdorff dimensions of the divergence points of self-similar measures with the open set condition. Nonlinearity 25 (2012), 93-105. | DOI | MR | Zbl
[22] Olsen, L.: Extremely non-normal numbers. Math. Proc. Camb. Philos. Soc. 137 (2004), 43-53. | DOI | MR | Zbl
[23] Olsen, L.: Multifractal analysis of divergence points of deformed measure theoretical Birkhoff averages. J. Math. Pures Appl. (9) 82 (2003), 1591-1649. | DOI | MR | Zbl
[24] Olsen, L., Winter, S.: Normal and non-normal points of self-similar sets and divergence points of self-similar measures. J. Lond. Math. Soc., (2) 67 (2003), 103-122. | DOI | MR | Zbl
[25] Oxtoby, J. C.: Measure and Category. A Survey of the Analogies between Topological and Measure Spaces. Graduate Texts in Mathematics, Vol. 2 Springer, New York (1980). | MR
[26] Pitskel, B. S.: Topological pressure on noncompact sets. Funct. Anal. Appl. 22 (1988), 240-241 translation from Funkts. Anal. Prilozh. 22 (1988), 83-84. | MR
[27] Pollicott, M., Weiss, H.: Multifractal analysis of Lyapunov exponent for continued fraction and Manneville-Pomeau transformations and applications to Diophantine approximation. Commun. Math. Phys. 207 (1999), 145-171. | DOI | MR
[28] Ruelle, D.: Thermodynamic Formalism. The Mathematical Structures of Equilibrium Stastistical Mechanics. Cambridge Mathematical Library Cambridge University Press, Cambridge (2004). | MR
[29] Šalát, T.: A remark on normal numbers. Rev. Roum. Math. Pures Appl. 11 (1966), 53-56. | MR
[30] Sigmund, K.: On dynamical systems with the specification property. Trans. Am. Math. Soc. 190 (1974), 285-299. | DOI | MR
[31] Takens, F., Verbitskiy, E.: On the variational principle for the topological entropy of certain non-compact sets. Ergodic Theory Dyn. Syst. 23 (2003), 317-348. | MR | Zbl
[32] Thompson, D.: The irregular set for maps with the specification property has full topological pressure. Dyn. Syst. 25 (2010), 25-51. | DOI | MR | Zbl
[33] Volkmann, B.: Gewinnmengen. Arch. Math. 10 German (1959), 235-240. | MR
Cité par Sources :