The central heights of stability groups of series in vector spaces
Czechoslovak Mathematical Journal, Tome 66 (2016) no. 1, pp. 213-222
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We compute the central heights of the full stability groups $S$ of ascending series and of descending series of subspaces in vector spaces over fields and division rings. The aim is to develop at least partial right analogues of results on left Engel elements and related nilpotent radicals in such $S$ proved recently by Casolo \ Puglisi, by Traustason and by the current author. Perhaps surprisingly, while there is an absolute bound on these central heights for descending series, for ascending series the central height can be any ordinal number.
We compute the central heights of the full stability groups $S$ of ascending series and of descending series of subspaces in vector spaces over fields and division rings. The aim is to develop at least partial right analogues of results on left Engel elements and related nilpotent radicals in such $S$ proved recently by Casolo \ Puglisi, by Traustason and by the current author. Perhaps surprisingly, while there is an absolute bound on these central heights for descending series, for ascending series the central height can be any ordinal number.
DOI : 10.1007/s10587-016-0251-4
Classification : 20F19, 20F45, 20H25
Keywords: central height; linear group; stability group
@article{10_1007_s10587_016_0251_4,
     author = {Wehrfritz, Bertram A. F.},
     title = {The central heights of stability groups of series in vector spaces},
     journal = {Czechoslovak Mathematical Journal},
     pages = {213--222},
     year = {2016},
     volume = {66},
     number = {1},
     doi = {10.1007/s10587-016-0251-4},
     mrnumber = {3483234},
     zbl = {06587885},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0251-4/}
}
TY  - JOUR
AU  - Wehrfritz, Bertram A. F.
TI  - The central heights of stability groups of series in vector spaces
JO  - Czechoslovak Mathematical Journal
PY  - 2016
SP  - 213
EP  - 222
VL  - 66
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0251-4/
DO  - 10.1007/s10587-016-0251-4
LA  - en
ID  - 10_1007_s10587_016_0251_4
ER  - 
%0 Journal Article
%A Wehrfritz, Bertram A. F.
%T The central heights of stability groups of series in vector spaces
%J Czechoslovak Mathematical Journal
%D 2016
%P 213-222
%V 66
%N 1
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0251-4/
%R 10.1007/s10587-016-0251-4
%G en
%F 10_1007_s10587_016_0251_4
Wehrfritz, Bertram A. F. The central heights of stability groups of series in vector spaces. Czechoslovak Mathematical Journal, Tome 66 (2016) no. 1, pp. 213-222. doi: 10.1007/s10587-016-0251-4

[1] Casolo, C., Puglisi, O.: Hirsch-Plotkin radical of stability groups. J. Algebra 370 (2012), 133-151. | DOI | MR | Zbl

[2] Robinson, D. J. S.: Finiteness Conditions and Generalized Soluble Groups. Part 1. Springer Berlin (1972). | MR

[3] Robinson, D. J. S.: Finiteness Conditions and Generalized Soluble Groups. Part 2. Springer Berlin (1972). | MR

[4] Traustason, G.: On the Hirsch-Plotkin radical of stability groups. J. Algebra 425 (2015), 31-41. | DOI | MR | Zbl

[5] Wehrfritz, B. A. F.: Stability groups of series in vector spaces. J. Algebra 445 (2016), Article ID 15414, 352-364. | DOI | MR | Zbl

Cité par Sources :