Pointwise convergence to the initial data for nonlocal dyadic diffusions
Czechoslovak Mathematical Journal, Tome 66 (2016) no. 1, pp. 193-204
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We solve the initial value problem for the diffusion induced by dyadic fractional derivative $s$ in $\mathbb R^+$. First we obtain the spectral analysis of the dyadic fractional derivative operator in terms of the Haar system, which unveils a structure for the underlying ``heat kernel''. We show that this kernel admits an integrable and decreasing majorant that involves the dyadic distance. This allows us to provide an estimate of the maximal operator of the diffusion by the Hardy-Littlewood dyadic maximal operator. As a consequence we obtain the pointwise convergence to the initial data.
We solve the initial value problem for the diffusion induced by dyadic fractional derivative $s$ in $\mathbb R^+$. First we obtain the spectral analysis of the dyadic fractional derivative operator in terms of the Haar system, which unveils a structure for the underlying ``heat kernel''. We show that this kernel admits an integrable and decreasing majorant that involves the dyadic distance. This allows us to provide an estimate of the maximal operator of the diffusion by the Hardy-Littlewood dyadic maximal operator. As a consequence we obtain the pointwise convergence to the initial data.
DOI : 10.1007/s10587-016-0249-y
Classification : 26A33, 35K57, 42B37
Keywords: pointwise convergence; nonlocal diffusion; dyadic fractional derivatives; Haar base
@article{10_1007_s10587_016_0249_y,
     author = {Actis, Marcelo and Aimar, Hugo},
     title = {Pointwise convergence to the initial data for nonlocal dyadic diffusions},
     journal = {Czechoslovak Mathematical Journal},
     pages = {193--204},
     year = {2016},
     volume = {66},
     number = {1},
     doi = {10.1007/s10587-016-0249-y},
     mrnumber = {3483232},
     zbl = {06587883},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0249-y/}
}
TY  - JOUR
AU  - Actis, Marcelo
AU  - Aimar, Hugo
TI  - Pointwise convergence to the initial data for nonlocal dyadic diffusions
JO  - Czechoslovak Mathematical Journal
PY  - 2016
SP  - 193
EP  - 204
VL  - 66
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0249-y/
DO  - 10.1007/s10587-016-0249-y
LA  - en
ID  - 10_1007_s10587_016_0249_y
ER  - 
%0 Journal Article
%A Actis, Marcelo
%A Aimar, Hugo
%T Pointwise convergence to the initial data for nonlocal dyadic diffusions
%J Czechoslovak Mathematical Journal
%D 2016
%P 193-204
%V 66
%N 1
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0249-y/
%R 10.1007/s10587-016-0249-y
%G en
%F 10_1007_s10587_016_0249_y
Actis, Marcelo; Aimar, Hugo. Pointwise convergence to the initial data for nonlocal dyadic diffusions. Czechoslovak Mathematical Journal, Tome 66 (2016) no. 1, pp. 193-204. doi: 10.1007/s10587-016-0249-y

[1] Aimar, H., Bongioanni, B., Gómez, I.: On dyadic nonlocal Schrödinger equations with Besov initial data. J. Math. Anal. Appl. 407 (2013), 23-34. | DOI | MR | Zbl

[2] Blumenthal, R. M., Getoor, R. K.: Some theorems on stable processes. Trans. Am. Math. Soc. 95 (1960), 263-273. | DOI | MR

[3] Caffarelli, L., Silvestre, L.: An extension problem related to the fractional Laplacian. Commun. Partial Differ. Equations 32 (2007), 1245-1260. | DOI | MR | Zbl

[4] Daubechies, I.: Ten Lectures on Wavelets. CBMS-NSF Regional Conference Series in Applied Mathematics 61 SIAM, Philadelphia (1992). | MR

Cité par Sources :