Some estimates for commutators of Riesz transform associated with Schrödinger type operators
Czechoslovak Mathematical Journal, Tome 66 (2016) no. 1, pp. 169-191
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $\mathcal {L}_1=-\Delta +V$ be a Schrödinger operator and let $\mathcal {L}_2=(-\Delta )^2+V^2$ be a Schrödinger type operator on ${\mathbb {R}^n}$ $(n \geq 5)$, where $V \neq 0$ is a nonnegative potential belonging to certain reverse Hölder class $B_s$ for $s\ge {n}/{2}$. The Hardy type space $H^1_{\mathcal {L}_2}$ is defined in terms of the maximal function with respect to the semigroup $\{{\rm e}^{-t \mathcal {L}_2}\}$ and it is identical to the Hardy space $H^1_{\mathcal {L}_1}$ established by Dziubański and Zienkiewicz. In this article, we prove the $L^p$-boundedness of the commutator $\mathcal {R}_b=b\mathcal {R}f-\mathcal {R}(bf)$ generated by the Riesz transform $\mathcal {R}=\nabla ^2\mathcal {L}_2^{-{1}/{2}}$, where $b\in {\rm BMO}_\theta (\rho )$, which is larger than the space ${\rm BMO}(\mathbb {R}^n)$. Moreover, we prove that $\mathcal {R}_b$ is bounded from the Hardy space $H_{\mathcal {L}_2}^1(\mathbb {R}^n)$ into weak $L_{\rm weak}^1(\mathbb {R}^n)$.
Let $\mathcal {L}_1=-\Delta +V$ be a Schrödinger operator and let $\mathcal {L}_2=(-\Delta )^2+V^2$ be a Schrödinger type operator on ${\mathbb {R}^n}$ $(n \geq 5)$, where $V \neq 0$ is a nonnegative potential belonging to certain reverse Hölder class $B_s$ for $s\ge {n}/{2}$. The Hardy type space $H^1_{\mathcal {L}_2}$ is defined in terms of the maximal function with respect to the semigroup $\{{\rm e}^{-t \mathcal {L}_2}\}$ and it is identical to the Hardy space $H^1_{\mathcal {L}_1}$ established by Dziubański and Zienkiewicz. In this article, we prove the $L^p$-boundedness of the commutator $\mathcal {R}_b=b\mathcal {R}f-\mathcal {R}(bf)$ generated by the Riesz transform $\mathcal {R}=\nabla ^2\mathcal {L}_2^{-{1}/{2}}$, where $b\in {\rm BMO}_\theta (\rho )$, which is larger than the space ${\rm BMO}(\mathbb {R}^n)$. Moreover, we prove that $\mathcal {R}_b$ is bounded from the Hardy space $H_{\mathcal {L}_2}^1(\mathbb {R}^n)$ into weak $L_{\rm weak}^1(\mathbb {R}^n)$.
DOI : 10.1007/s10587-016-0248-z
Classification : 35J10, 42B20, 42B30, 42B35
Keywords: commutator; Hardy space; reverse Hölder inequality; Riesz transform; Schrödinger operator; Schrödinger type operator
@article{10_1007_s10587_016_0248_z,
     author = {Liu, Yu and Zhang, Jing and Sheng, Jie-Lai and Wang, Li-Juan},
     title = {Some estimates for commutators of {Riesz} transform associated with {Schr\"odinger} type operators},
     journal = {Czechoslovak Mathematical Journal},
     pages = {169--191},
     year = {2016},
     volume = {66},
     number = {1},
     doi = {10.1007/s10587-016-0248-z},
     mrnumber = {3483231},
     zbl = {06587882},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0248-z/}
}
TY  - JOUR
AU  - Liu, Yu
AU  - Zhang, Jing
AU  - Sheng, Jie-Lai
AU  - Wang, Li-Juan
TI  - Some estimates for commutators of Riesz transform associated with Schrödinger type operators
JO  - Czechoslovak Mathematical Journal
PY  - 2016
SP  - 169
EP  - 191
VL  - 66
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0248-z/
DO  - 10.1007/s10587-016-0248-z
LA  - en
ID  - 10_1007_s10587_016_0248_z
ER  - 
%0 Journal Article
%A Liu, Yu
%A Zhang, Jing
%A Sheng, Jie-Lai
%A Wang, Li-Juan
%T Some estimates for commutators of Riesz transform associated with Schrödinger type operators
%J Czechoslovak Mathematical Journal
%D 2016
%P 169-191
%V 66
%N 1
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0248-z/
%R 10.1007/s10587-016-0248-z
%G en
%F 10_1007_s10587_016_0248_z
Liu, Yu; Zhang, Jing; Sheng, Jie-Lai; Wang, Li-Juan. Some estimates for commutators of Riesz transform associated with Schrödinger type operators. Czechoslovak Mathematical Journal, Tome 66 (2016) no. 1, pp. 169-191. doi: 10.1007/s10587-016-0248-z

[1] Bongioanni, B., Harboure, E., Salinas, O.: Commutators of Riesz transforms related to Schrödinger operators. J. Fourier Anal. Appl. 17 (2011), 115-134. | DOI | MR | Zbl

[2] Bramanti, M., Cerutti, C. M.: Commutators of singular integrals on homogeneous spaces. Boll. Unione Mat. Ital. 10 (1996), 843-883. | MR

[3] Cao, J., Liu, Y., Yang, D.: Hardy spaces $H^1_{\mathcal L}({\mathbb R}^n)$ associated to Schrödinger type operators $(-\Delta)^2+V^2$. Houston J. Math. 36 (2010), 1067-1095. | MR

[4] Coifman, R. R., Rochberg, R., Weiss, G.: Factorization theorem for Hardy spaces in several variables. Ann. Math. 103 (1976), 611-635. | DOI | MR

[5] Duong, X. T., Yan, L.: Commutators of BMO functions and singular integral operators with non-smooth kernels. Bull. Aust. Math. Soc. 67 (2003), 187-200. | DOI | MR | Zbl

[6] Dziubański, J., Zienkiewicz, J.: Hardy space $H^1$ associated to Schrödinger operators with potentials satisfying reverse Hölder inequality. Rev. Mat. Iberoam 15 (1999), 279-296. | DOI | MR

[7] Guo, Z., Li, P., Peng, L.: $L^p$ boundedness of commutators of Riesz transform associated to Schrödinger operator. J. Math. Anal. Appl. 341 (2008), 421-432. | DOI | MR

[8] Janson, S.: Mean oscillation and commutators of singular integral operators. Ark. Math. 16 (1978), 263-270. | DOI | MR | Zbl

[9] Li, H. Q.: $L^p$ estimates of Schrödinger operators on nilpotent groups. J. Funct. Anal. 161 (1999), French 152-218. | DOI | MR

[10] Li, P., Peng, L.: Endpoint estimates for commutators of Riesz transforms associated with Schrödinger operators. Bull. Aust. Math. Soc. 82 (2010), 367-389. | DOI | MR | Zbl

[11] Liu, Y.: $L^p$ estimates for Schrödinger type operators on the Heisenberg group. J. Korean Math. Soc. 47 (2010), 425-443. | DOI | MR | Zbl

[12] Liu, Y., Dong, J.: Some estimates of higher order Riesz transform related to Schrödinger type operators. Potential Anal. 32 (2010), 41-55. | DOI | MR | Zbl

[13] Liu, Y., Huang, J. Z., Dong, J. F.: Commutators of Calderón-Zygmund operators related to admissible functions on spaces of homogeneous type and applications to Schrödinger operators. Sci. China. Math. 56 (2013), 1895-1913. | DOI | MR | Zbl

[14] Liu, Y., Huang, J., Xie, D.: Some estimates of Schrödinger type operators on the Heisenberg group. Arch. Math. 94 (2010), 255-264. | DOI | MR | Zbl

[15] Liu, Y., Sheng, J.: Some estimates for commutators of Riesz transforms associated with Schrödinger operators. J. Math. Anal. Appl. 419 (2014), 298-328. | DOI | MR

[16] Liu, Y., Wang, L., Dong, J.: Commutators of higher order Riesz transform associated with Schrödinger operators. J. Funct. Spaces Appl. 2013 (2013), Article ID 842375, 15 pages. | MR | Zbl

[17] Shen, Z.: $L^{p}$ estimates for Schrödinger operators with certain potentials. Ann. Inst. Fourier (Grenoble) 45 (1995), 513-546. | DOI | MR

[18] Sugano, S.: $L^p$ estimates for some Schrödinger operators and a Calderón-Zygmund operator of Schrödinger type. Tokyo J. Math. 30 (2007), 179-197. | DOI | MR

[19] Zhong, J.: Harmonic Analysis for some Schrödinger Type Operators. Ph.D. Thesis, Princeton University (1993). | MR

Cité par Sources :