Cartan-Eilenberg projective, injective and flat complexes
Czechoslovak Mathematical Journal, Tome 66 (2016) no. 1, pp. 151-167
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $R$ be an associative ring with identity and $\mathcal {F}$ a class of $R$-modules. In this article: we first give a detailed treatment of Cartan-Eilenberg $\mathcal {F}$ complexes and extend the basic properties of the class $\mathcal {F}$ to the class ${\rm CE}(\mathcal {F}$). Secondly, we study and give some equivalent characterizations of Cartan-Eilenberg projective, injective and flat complexes which are similar to projective, injective and flat modules, respectively. As applications, we characterize some classical rings in terms of these complexes, including coherent, Noetherian, von Neumann regular rings, $\rm QF$ rings, semisimple rings, hereditary rings and perfect rings.
Let $R$ be an associative ring with identity and $\mathcal {F}$ a class of $R$-modules. In this article: we first give a detailed treatment of Cartan-Eilenberg $\mathcal {F}$ complexes and extend the basic properties of the class $\mathcal {F}$ to the class ${\rm CE}(\mathcal {F}$). Secondly, we study and give some equivalent characterizations of Cartan-Eilenberg projective, injective and flat complexes which are similar to projective, injective and flat modules, respectively. As applications, we characterize some classical rings in terms of these complexes, including coherent, Noetherian, von Neumann regular rings, $\rm QF$ rings, semisimple rings, hereditary rings and perfect rings.
DOI : 10.1007/s10587-016-0247-0
Classification : 18G10, 18G25, 18G35
Keywords: Cartan-Eilenberg projective complex; Cartan-Eilenberg injective complex; Cartan-Eilenberg flat complex
@article{10_1007_s10587_016_0247_0,
     author = {Zhai, Xiaorui and Zhang, Chunxia},
     title = {Cartan-Eilenberg projective, injective and flat complexes},
     journal = {Czechoslovak Mathematical Journal},
     pages = {151--167},
     year = {2016},
     volume = {66},
     number = {1},
     doi = {10.1007/s10587-016-0247-0},
     mrnumber = {3483230},
     zbl = {06587881},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0247-0/}
}
TY  - JOUR
AU  - Zhai, Xiaorui
AU  - Zhang, Chunxia
TI  - Cartan-Eilenberg projective, injective and flat complexes
JO  - Czechoslovak Mathematical Journal
PY  - 2016
SP  - 151
EP  - 167
VL  - 66
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0247-0/
DO  - 10.1007/s10587-016-0247-0
LA  - en
ID  - 10_1007_s10587_016_0247_0
ER  - 
%0 Journal Article
%A Zhai, Xiaorui
%A Zhang, Chunxia
%T Cartan-Eilenberg projective, injective and flat complexes
%J Czechoslovak Mathematical Journal
%D 2016
%P 151-167
%V 66
%N 1
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0247-0/
%R 10.1007/s10587-016-0247-0
%G en
%F 10_1007_s10587_016_0247_0
Zhai, Xiaorui; Zhang, Chunxia. Cartan-Eilenberg projective, injective and flat complexes. Czechoslovak Mathematical Journal, Tome 66 (2016) no. 1, pp. 151-167. doi: 10.1007/s10587-016-0247-0

[1] Anderson, F. W., Fuller, K. R.: Rings and Categories of Modules. Graduate Texts in Mathematics 13 Springer, New York (1992). | DOI | MR | Zbl

[2] Bass, H.: Finitistic dimension and a homological generalization of semi-primary rings. Trans. Am. Math. Soc. 95 (1960), 466-488. | DOI | MR

[3] Bennis, D., Mahdou, N.: Global Gorenstein dimensions. Proc. Amer. Math. Soc. 138 (2010), 461-465. | DOI | MR | Zbl

[4] Cartan, H., Eilenberg, S.: Homological Algebra. Princeton Mathematical Series 19 Princeton University Press 15, Princeton (1999). | MR

[5] Chase, S. U.: Direct products of modules. Trans. Amer. Math. Soc. 97 (1960), 457-473. | DOI | MR

[6] Cheatham, T. J., Stone, D. R.: Flat and projective character modules. Proc. Am. Math. Soc. 81 (1981), 175-177. | DOI | MR | Zbl

[7] Enochs, E. E.: Cartan-Eilenberg complexes and resolutions. J. Algebra 342 (2011), 16-39. | DOI | MR | Zbl

[8] Enochs, E. E.: Injective and flat covers, envelopes and resolvents. Isr. J. Math. 39 (1981), 189-209. | DOI | MR | Zbl

[9] Enochs, E. E., Jenda, O. M. G.: Relative Homological Algebra. Volume 1. De Gruyter Expositions in Mathematics 30 Walter de Gruyter, Berlin (2011). | MR

[10] Enochs, E. E., Rozas, J. R. García: Tensor products of complexes. Math. J. Okayama Univ. 39 (1997), 17-39. | MR

[11] Enochs, E. E., López-Ramos, J. A.: Kaplansky classes. Rend. Sem. Mat. Univ. Padova 107 (2002), 67-79. | MR | Zbl

[12] Fieldhouse, D. J.: Character modules. Comment. Math. Helv. 46 (1971), 274-276. | DOI | MR | Zbl

[13] Rozas, J. R. Garc{í}a: Covers and Envelopes in the Category of Complexes of Modules. Chapman & Hall/CRC Research Notes in Mathematics 407 Chapman and Hall/CRC, Boca Raton (1999). | MR

[14] Iacob, A.: DG-injective covers, \#-injective covers. Commun. Algebra 39 (2011), 1673-1685. | DOI | MR

[15] Rotman, J. J.: An Introduction to Homological Algebra. Universitext Springer, Berlin (2009). | MR | Zbl

[16] Verdier, J.-L.: Derived Categories of Abelian Categories. Astérisque 239. Société Mathématique de France Paris French (1996). | MR

[17] Wang, Z., Liu, Z.: Complete cotorsion pairs in the category of complexes. Turk. J. Math. 37 (2013), 852-862. | MR | Zbl

[18] Xu, J.: Flat Covers of Modules. Lecture Notes in Mathematics 1634 Springer, Berlin (1996). | DOI | MR | Zbl

[19] Yang, G., Liang, L.: Cartan-Eilenberg Gorenstein flat complexes. Math. Scand. 114 (2014), 5-25. | DOI | MR | Zbl

[20] Yang, G., Liang, L.: Cartan-Eilenberg Gorenstein projective complexes. J. Algebra Appl. 13 (2014), Article ID 1350068, 17 pages. | DOI | MR | Zbl

Cité par Sources :