Keywords: polyharmonic map; compactness; Coulomb moving frame; Palais-Smale sequence; removable singularity
@article{10_1007_s10587_016_0246_1,
author = {Zheng, Shenzhou},
title = {A compactness result for polyharmonic maps in the critical dimension},
journal = {Czechoslovak Mathematical Journal},
pages = {137--150},
year = {2016},
volume = {66},
number = {1},
doi = {10.1007/s10587-016-0246-1},
mrnumber = {3483229},
zbl = {06587880},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0246-1/}
}
TY - JOUR AU - Zheng, Shenzhou TI - A compactness result for polyharmonic maps in the critical dimension JO - Czechoslovak Mathematical Journal PY - 2016 SP - 137 EP - 150 VL - 66 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0246-1/ DO - 10.1007/s10587-016-0246-1 LA - en ID - 10_1007_s10587_016_0246_1 ER -
%0 Journal Article %A Zheng, Shenzhou %T A compactness result for polyharmonic maps in the critical dimension %J Czechoslovak Mathematical Journal %D 2016 %P 137-150 %V 66 %N 1 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0246-1/ %R 10.1007/s10587-016-0246-1 %G en %F 10_1007_s10587_016_0246_1
Zheng, Shenzhou. A compactness result for polyharmonic maps in the critical dimension. Czechoslovak Mathematical Journal, Tome 66 (2016) no. 1, pp. 137-150. doi: 10.1007/s10587-016-0246-1
[1] Angelsberg, G., Pumberger, D.: A regularity result for polyharmonic maps with higher integrability. Ann. Global Anal. Geom. 35 (2009), 63-81. | DOI | MR | Zbl
[2] Bethuel, F.: Weak limits of Palais-Smale sequences for a class of critical functionals. Calc. Var. Partial Differ. Equ. 1 (1993), 267-310. | DOI | MR
[3] Freire, A., Müller, S., Struwe, M.: Weak compactness of wave maps and harmonic maps. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 15 (1998), 725-754. | DOI | MR
[4] Gastel, A.: The extrinsic polyharmonic map heat flow in the critical dimension. Adv. Geom. 6 (2006), 501-521. | DOI | MR | Zbl
[5] Gastel, A., Scheven, C.: Regularity of polyharmonic maps in the critical dimension. Commun. Anal. Geom. 17 (2009), 185-226. | DOI | MR | Zbl
[6] Goldstein, P., Strzelecki, A., Zatorska-Goldstein, A.: On polyharmonic maps into spheres in the critical dimension. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 26 (2009), 1387-1405. | DOI | MR | Zbl
[7] Hélein, F.: Regularity of weakly harmonic maps between a surface and a Riemannian manifold. C. R. Acad. Sci., Paris, Sér. (1) 312 French (1991), 591-596. | MR
[8] Lamm, T., Rivière, T.: Conservation laws for fourth order systems in four dimensions. Commun. Partial Differ. Equations 33 (2008), 245-262. | DOI | MR | Zbl
[9] Laurain, P., Rivière, T.: Energy quantization for biharmonic maps. Adv. Calc. Var. 6 (2013), 191-216. | DOI | MR | Zbl
[10] Lions, P.-L.: The concentration-compactness principle in the calculus of variations. The limit case. I. Rev. Mat. Iberoam. 1 (1985), 145-201. | DOI | MR | Zbl
[11] Lions, P.-L.: The concentration-compactness principle in the calculus of variations. The limit case. II. Rev. Mat. Iberoam. 1 (1985), 45-121. | DOI | MR
[12] Mou, L., Wang, C.: Bubbling phenomena of Palais-Smale-like sequences of $m$-harmonic type systems. Calc. Var. Partial Differ. Equ. 4 (1996), 341-367. | DOI | MR
[13] Rivière, T.: Conservation laws for conformally invariant variational problems. Invent. Math. 168 (2007), 1-22. | DOI | MR | Zbl
[14] Sacks, J., Uhlenbeck, K.: The existence of minimal immersions of 2-spheres. Ann. Math. (2) 113 (1981), 1-24. | MR
[15] Strzelecki, P.: On biharmonic maps and their generalizations. Calc. Var. Partial Differ. Equ. 18 (2003), 401-432. | DOI | MR | Zbl
[16] Strzelecki, P., Zatorska-Goldstein, A.: A compactness theorem for weak solutions of higher-dimensional $H$-systems. Duke Math. J. 121 (2004), 269-284. | DOI | MR | Zbl
[17] Tartar, L.: Imbedding theorems of Sobolev spaces into Lorentz spaces. Boll. Unione Mat. Ital., Sez. B, Artic. Ric. Mat. (8) 1 (1998), 479-500. | MR
[18] Uhlenbeck, K. K.: Connections with $L^p$ bounds on curvature. Commun. Math. Phys. 83 (1982), 31-42. | DOI | MR
[19] Wang, C.: A compactness theorem of $n$-harmonic maps. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 22 (2005), 509-519. | DOI | MR | Zbl
[20] Zheng, S.: Weak compactness of biharmonic maps. Electron. J. Differ. Equ. (electronic only) 2012 (2012), Article No. 190, 7 pages. | MR | Zbl
Cité par Sources :