A compactness result for polyharmonic maps in the critical dimension
Czechoslovak Mathematical Journal, Tome 66 (2016) no. 1, pp. 137-150
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

For $n=2m\ge 4$, let $\Omega \in \mathbb {R}^n$ be a bounded smooth domain and ${\mathcal {N}\subset \mathbb {R}^L}$ a compact smooth Riemannian manifold without boundary. Suppose that $\{u_k\}\in W^{m,2}(\Omega ,\mathcal {N})$ is a sequence of weak solutions in the critical dimension to the perturbed $m$-polyharmonic maps $$\label {m-polyharmonic} \frac {\rm d}{{\rm d} t}\Big |_{t=0}E_m(\Pi (u+t\xi ))=0 $$ with $\Phi _k\rightarrow 0$ in $(W^{m,2}(\Omega ,\mathcal {N}))^*$ and $u_k\rightharpoonup u$ weakly in $W^{m,2}(\Omega ,\mathcal {N})$. Then $u$ is an $m$-polyharmonic map. In particular, the space of $m$-polyharmonic maps is sequentially compact for the weak-$W^{m,2}$ topology.
For $n=2m\ge 4$, let $\Omega \in \mathbb {R}^n$ be a bounded smooth domain and ${\mathcal {N}\subset \mathbb {R}^L}$ a compact smooth Riemannian manifold without boundary. Suppose that $\{u_k\}\in W^{m,2}(\Omega ,\mathcal {N})$ is a sequence of weak solutions in the critical dimension to the perturbed $m$-polyharmonic maps $$\label {m-polyharmonic} \frac {\rm d}{{\rm d} t}\Big |_{t=0}E_m(\Pi (u+t\xi ))=0 $$ with $\Phi _k\rightarrow 0$ in $(W^{m,2}(\Omega ,\mathcal {N}))^*$ and $u_k\rightharpoonup u$ weakly in $W^{m,2}(\Omega ,\mathcal {N})$. Then $u$ is an $m$-polyharmonic map. In particular, the space of $m$-polyharmonic maps is sequentially compact for the weak-$W^{m,2}$ topology.
DOI : 10.1007/s10587-016-0246-1
Classification : 35J35, 35J48, 58J05
Keywords: polyharmonic map; compactness; Coulomb moving frame; Palais-Smale sequence; removable singularity
@article{10_1007_s10587_016_0246_1,
     author = {Zheng, Shenzhou},
     title = {A compactness result for polyharmonic maps in the critical dimension},
     journal = {Czechoslovak Mathematical Journal},
     pages = {137--150},
     year = {2016},
     volume = {66},
     number = {1},
     doi = {10.1007/s10587-016-0246-1},
     mrnumber = {3483229},
     zbl = {06587880},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0246-1/}
}
TY  - JOUR
AU  - Zheng, Shenzhou
TI  - A compactness result for polyharmonic maps in the critical dimension
JO  - Czechoslovak Mathematical Journal
PY  - 2016
SP  - 137
EP  - 150
VL  - 66
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0246-1/
DO  - 10.1007/s10587-016-0246-1
LA  - en
ID  - 10_1007_s10587_016_0246_1
ER  - 
%0 Journal Article
%A Zheng, Shenzhou
%T A compactness result for polyharmonic maps in the critical dimension
%J Czechoslovak Mathematical Journal
%D 2016
%P 137-150
%V 66
%N 1
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0246-1/
%R 10.1007/s10587-016-0246-1
%G en
%F 10_1007_s10587_016_0246_1
Zheng, Shenzhou. A compactness result for polyharmonic maps in the critical dimension. Czechoslovak Mathematical Journal, Tome 66 (2016) no. 1, pp. 137-150. doi: 10.1007/s10587-016-0246-1

[1] Angelsberg, G., Pumberger, D.: A regularity result for polyharmonic maps with higher integrability. Ann. Global Anal. Geom. 35 (2009), 63-81. | DOI | MR | Zbl

[2] Bethuel, F.: Weak limits of Palais-Smale sequences for a class of critical functionals. Calc. Var. Partial Differ. Equ. 1 (1993), 267-310. | DOI | MR

[3] Freire, A., Müller, S., Struwe, M.: Weak compactness of wave maps and harmonic maps. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 15 (1998), 725-754. | DOI | MR

[4] Gastel, A.: The extrinsic polyharmonic map heat flow in the critical dimension. Adv. Geom. 6 (2006), 501-521. | DOI | MR | Zbl

[5] Gastel, A., Scheven, C.: Regularity of polyharmonic maps in the critical dimension. Commun. Anal. Geom. 17 (2009), 185-226. | DOI | MR | Zbl

[6] Goldstein, P., Strzelecki, A., Zatorska-Goldstein, A.: On polyharmonic maps into spheres in the critical dimension. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 26 (2009), 1387-1405. | DOI | MR | Zbl

[7] Hélein, F.: Regularity of weakly harmonic maps between a surface and a Riemannian manifold. C. R. Acad. Sci., Paris, Sér. (1) 312 French (1991), 591-596. | MR

[8] Lamm, T., Rivière, T.: Conservation laws for fourth order systems in four dimensions. Commun. Partial Differ. Equations 33 (2008), 245-262. | DOI | MR | Zbl

[9] Laurain, P., Rivière, T.: Energy quantization for biharmonic maps. Adv. Calc. Var. 6 (2013), 191-216. | DOI | MR | Zbl

[10] Lions, P.-L.: The concentration-compactness principle in the calculus of variations. The limit case. I. Rev. Mat. Iberoam. 1 (1985), 145-201. | DOI | MR | Zbl

[11] Lions, P.-L.: The concentration-compactness principle in the calculus of variations. The limit case. II. Rev. Mat. Iberoam. 1 (1985), 45-121. | DOI | MR

[12] Mou, L., Wang, C.: Bubbling phenomena of Palais-Smale-like sequences of $m$-harmonic type systems. Calc. Var. Partial Differ. Equ. 4 (1996), 341-367. | DOI | MR

[13] Rivière, T.: Conservation laws for conformally invariant variational problems. Invent. Math. 168 (2007), 1-22. | DOI | MR | Zbl

[14] Sacks, J., Uhlenbeck, K.: The existence of minimal immersions of 2-spheres. Ann. Math. (2) 113 (1981), 1-24. | MR

[15] Strzelecki, P.: On biharmonic maps and their generalizations. Calc. Var. Partial Differ. Equ. 18 (2003), 401-432. | DOI | MR | Zbl

[16] Strzelecki, P., Zatorska-Goldstein, A.: A compactness theorem for weak solutions of higher-dimensional $H$-systems. Duke Math. J. 121 (2004), 269-284. | DOI | MR | Zbl

[17] Tartar, L.: Imbedding theorems of Sobolev spaces into Lorentz spaces. Boll. Unione Mat. Ital., Sez. B, Artic. Ric. Mat. (8) 1 (1998), 479-500. | MR

[18] Uhlenbeck, K. K.: Connections with $L^p$ bounds on curvature. Commun. Math. Phys. 83 (1982), 31-42. | DOI | MR

[19] Wang, C.: A compactness theorem of $n$-harmonic maps. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 22 (2005), 509-519. | DOI | MR | Zbl

[20] Zheng, S.: Weak compactness of biharmonic maps. Electron. J. Differ. Equ. (electronic only) 2012 (2012), Article No. 190, 7 pages. | MR | Zbl

Cité par Sources :