Some dimensional results for a class of special homogeneous Moran sets
Czechoslovak Mathematical Journal, Tome 66 (2016) no. 1, pp. 127-135
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We construct a class of special homogeneous Moran sets, called $\{m_{k}\}$-quasi homogeneous Cantor sets, and discuss their Hausdorff dimensions. By adjusting the value of $\{m_{k}\}_{k\ge 1}$, we constructively prove the intermediate value theorem for the homogeneous Moran set. Moreover, we obtain a sufficient condition for the Hausdorff dimension of homogeneous Moran sets to assume the minimum value, which expands earlier works.
We construct a class of special homogeneous Moran sets, called $\{m_{k}\}$-quasi homogeneous Cantor sets, and discuss their Hausdorff dimensions. By adjusting the value of $\{m_{k}\}_{k\ge 1}$, we constructively prove the intermediate value theorem for the homogeneous Moran set. Moreover, we obtain a sufficient condition for the Hausdorff dimension of homogeneous Moran sets to assume the minimum value, which expands earlier works.
DOI : 10.1007/s10587-016-0245-2
Classification : 28A80
Keywords: homogeneous Moran set; $\{m_{k}\}$-Moran set; $\{m_{k}\}$-quasi homogeneous Cantor set; Hausdorff dimension
@article{10_1007_s10587_016_0245_2,
     author = {Hu, Xiaomei},
     title = {Some dimensional results for a class of special homogeneous {Moran} sets},
     journal = {Czechoslovak Mathematical Journal},
     pages = {127--135},
     year = {2016},
     volume = {66},
     number = {1},
     doi = {10.1007/s10587-016-0245-2},
     mrnumber = {3483228},
     zbl = {06587879},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0245-2/}
}
TY  - JOUR
AU  - Hu, Xiaomei
TI  - Some dimensional results for a class of special homogeneous Moran sets
JO  - Czechoslovak Mathematical Journal
PY  - 2016
SP  - 127
EP  - 135
VL  - 66
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0245-2/
DO  - 10.1007/s10587-016-0245-2
LA  - en
ID  - 10_1007_s10587_016_0245_2
ER  - 
%0 Journal Article
%A Hu, Xiaomei
%T Some dimensional results for a class of special homogeneous Moran sets
%J Czechoslovak Mathematical Journal
%D 2016
%P 127-135
%V 66
%N 1
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0245-2/
%R 10.1007/s10587-016-0245-2
%G en
%F 10_1007_s10587_016_0245_2
Hu, Xiaomei. Some dimensional results for a class of special homogeneous Moran sets. Czechoslovak Mathematical Journal, Tome 66 (2016) no. 1, pp. 127-135. doi: 10.1007/s10587-016-0245-2

[1] Falconer, K.: Fractal Geometry. Mathematical Foundations and Applications. John Wiley & Sons, Chichester (1990). | MR

[2] Feng, D.-J.: The limited Rademacher functions and Bernoulli convolutions associated with Pisot numbers. Adv. Math. 195 (2005), 24-101. | DOI | MR | Zbl

[3] Feng, D., Wen, Z., Wu, J.: Some dimensional results for homogeneous Moran sets. Sci. China, Ser. A 40 (1997), 475-482. | DOI | MR

[4] Li, J., Wu, M.: Pointwise dimensions of general Moran measures with open set condition. Sci. China, Math. 54 (2011), 699-710. | DOI | MR | Zbl

[5] Peng, F., Wen, S.: Fatness and thinness of uniform Cantor sets for doubling measures. Sci. China, Math. 54 (2011), 75-81. | DOI | MR | Zbl

[6] Rao, H., Ruan, H.-J., Wang, Y.: Lipschitz equivalence of Cantor sets and algebraic properties of contraction ratios. Trans. Am. Math. Soc. 364 (2012), 1109-1126. | DOI | MR | Zbl

[7] Wang, B.-W., Wu, J.: Hausdorff dimension of certain sets arising in continued fraction expansions. Adv. Math. 218 (2008), 1319-1339. | DOI | MR | Zbl

[8] Wang, X. H., Wen, S. Y.: Doubling measures on Cantor sets and their extensions. Acta Math. Hung. 134 (2012), 431-438. | DOI | MR | Zbl

[9] Wu, J.: On the sum of degrees of digits occurring in continued fraction expansions of Laurent series. Math. Proc. Camb. Philos. Soc. 138 (2005), 9-20. | DOI | MR | Zbl

[10] Wu, M.: The singularity spectrum {$f(\alpha)$} of some Moran fractals. Monatsh. Math. 144 (2005), 141-155. | DOI | MR | Zbl

Cité par Sources :