Keywords: homogeneous Moran set; $\{m_{k}\}$-Moran set; $\{m_{k}\}$-quasi homogeneous Cantor set; Hausdorff dimension
@article{10_1007_s10587_016_0245_2,
author = {Hu, Xiaomei},
title = {Some dimensional results for a class of special homogeneous {Moran} sets},
journal = {Czechoslovak Mathematical Journal},
pages = {127--135},
year = {2016},
volume = {66},
number = {1},
doi = {10.1007/s10587-016-0245-2},
mrnumber = {3483228},
zbl = {06587879},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0245-2/}
}
TY - JOUR AU - Hu, Xiaomei TI - Some dimensional results for a class of special homogeneous Moran sets JO - Czechoslovak Mathematical Journal PY - 2016 SP - 127 EP - 135 VL - 66 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0245-2/ DO - 10.1007/s10587-016-0245-2 LA - en ID - 10_1007_s10587_016_0245_2 ER -
%0 Journal Article %A Hu, Xiaomei %T Some dimensional results for a class of special homogeneous Moran sets %J Czechoslovak Mathematical Journal %D 2016 %P 127-135 %V 66 %N 1 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0245-2/ %R 10.1007/s10587-016-0245-2 %G en %F 10_1007_s10587_016_0245_2
Hu, Xiaomei. Some dimensional results for a class of special homogeneous Moran sets. Czechoslovak Mathematical Journal, Tome 66 (2016) no. 1, pp. 127-135. doi: 10.1007/s10587-016-0245-2
[1] Falconer, K.: Fractal Geometry. Mathematical Foundations and Applications. John Wiley & Sons, Chichester (1990). | MR
[2] Feng, D.-J.: The limited Rademacher functions and Bernoulli convolutions associated with Pisot numbers. Adv. Math. 195 (2005), 24-101. | DOI | MR | Zbl
[3] Feng, D., Wen, Z., Wu, J.: Some dimensional results for homogeneous Moran sets. Sci. China, Ser. A 40 (1997), 475-482. | DOI | MR
[4] Li, J., Wu, M.: Pointwise dimensions of general Moran measures with open set condition. Sci. China, Math. 54 (2011), 699-710. | DOI | MR | Zbl
[5] Peng, F., Wen, S.: Fatness and thinness of uniform Cantor sets for doubling measures. Sci. China, Math. 54 (2011), 75-81. | DOI | MR | Zbl
[6] Rao, H., Ruan, H.-J., Wang, Y.: Lipschitz equivalence of Cantor sets and algebraic properties of contraction ratios. Trans. Am. Math. Soc. 364 (2012), 1109-1126. | DOI | MR | Zbl
[7] Wang, B.-W., Wu, J.: Hausdorff dimension of certain sets arising in continued fraction expansions. Adv. Math. 218 (2008), 1319-1339. | DOI | MR | Zbl
[8] Wang, X. H., Wen, S. Y.: Doubling measures on Cantor sets and their extensions. Acta Math. Hung. 134 (2012), 431-438. | DOI | MR | Zbl
[9] Wu, J.: On the sum of degrees of digits occurring in continued fraction expansions of Laurent series. Math. Proc. Camb. Philos. Soc. 138 (2005), 9-20. | DOI | MR | Zbl
[10] Wu, M.: The singularity spectrum {$f(\alpha)$} of some Moran fractals. Monatsh. Math. 144 (2005), 141-155. | DOI | MR | Zbl
Cité par Sources :