Hyperreflexivity of bilattices
Czechoslovak Mathematical Journal, Tome 66 (2016) no. 1, pp. 119-125 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The notion of a bilattice was introduced by Shulman. A bilattice is a subspace analogue for a lattice. In this work the definition of hyperreflexivity for bilattices is given and studied. We give some general results concerning this notion. To a given lattice $\mathcal {L}$ we can construct the bilattice $\Sigma _{\mathcal {L}}$. Similarly, having a bilattice $\Sigma $ we may consider the lattice $\mathcal {L}_{\Sigma }$. In this paper we study the relationship between hyperreflexivity of subspace lattices and of their associated bilattices. Some examples of hyperreflexive or not hyperreflexive bilattices are given.
The notion of a bilattice was introduced by Shulman. A bilattice is a subspace analogue for a lattice. In this work the definition of hyperreflexivity for bilattices is given and studied. We give some general results concerning this notion. To a given lattice $\mathcal {L}$ we can construct the bilattice $\Sigma _{\mathcal {L}}$. Similarly, having a bilattice $\Sigma $ we may consider the lattice $\mathcal {L}_{\Sigma }$. In this paper we study the relationship between hyperreflexivity of subspace lattices and of their associated bilattices. Some examples of hyperreflexive or not hyperreflexive bilattices are given.
DOI : 10.1007/s10587-016-0244-3
Classification : 47A15, 47L99
Keywords: reflexive bilattice; hyperreflexive bilattice; subspace lattice; bilattice
@article{10_1007_s10587_016_0244_3,
     author = {Kli\'s-Garlicka, Kamila},
     title = {Hyperreflexivity of bilattices},
     journal = {Czechoslovak Mathematical Journal},
     pages = {119--125},
     year = {2016},
     volume = {66},
     number = {1},
     doi = {10.1007/s10587-016-0244-3},
     mrnumber = {3483227},
     zbl = {06587878},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0244-3/}
}
TY  - JOUR
AU  - Kliś-Garlicka, Kamila
TI  - Hyperreflexivity of bilattices
JO  - Czechoslovak Mathematical Journal
PY  - 2016
SP  - 119
EP  - 125
VL  - 66
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0244-3/
DO  - 10.1007/s10587-016-0244-3
LA  - en
ID  - 10_1007_s10587_016_0244_3
ER  - 
%0 Journal Article
%A Kliś-Garlicka, Kamila
%T Hyperreflexivity of bilattices
%J Czechoslovak Mathematical Journal
%D 2016
%P 119-125
%V 66
%N 1
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0244-3/
%R 10.1007/s10587-016-0244-3
%G en
%F 10_1007_s10587_016_0244_3
Kliś-Garlicka, Kamila. Hyperreflexivity of bilattices. Czechoslovak Mathematical Journal, Tome 66 (2016) no. 1, pp. 119-125. doi: 10.1007/s10587-016-0244-3

[1] Arveson, W.: Interpolation problems in nest algebras. J. Funct. Anal. 20 (1975), 208-233. | DOI | MR

[2] Davidson, K. R., Harrison, K. J.: Distance formulae for subspace lattices. J. Lond. Math. Soc., (2) 39 (1989), 309-323. | DOI | MR | Zbl

[3] Kli{ś}-Garlicka, K.: Reflexivity of bilattices. Czech. Math. J. 63 (2013), 995-1000. | DOI | MR | Zbl

[4] Kraus, J., Larson, D. R.: Reflexivity and distance formulae. Proc. Lond. Math. Soc. (3) 53 (1986), 340-356. | DOI | MR

[5] Shulman, V., Turowska, L.: Operator synthesis. I. Synthetic sets, bilattices and tensor algebras. J. Funct. Anal. 209 (2004), 293-331. | DOI | MR | Zbl

[6] Shulman, V.: A review of "Nest Algebras by K. R. Davidson, Longman Sci. and Techn. Pitman Research Notes Math., 1988". Algebra and Analiz 2 (1990), 236-255 http://www.mathnet.ru/links/04e6653e78d90590f32a76de1b827b3b/aa194.pdf

Cité par Sources :