Keywords: integrability; very weak solution; boundary value problem; $p$-harmonic equation
@article{10_1007_s10587_016_0242_5,
author = {Gao, Hongya and Liang, Shuang and Cui, Yi},
title = {Integrability for very weak solutions to boundary value problems of $p$-harmonic equation},
journal = {Czechoslovak Mathematical Journal},
pages = {101--110},
year = {2016},
volume = {66},
number = {1},
doi = {10.1007/s10587-016-0242-5},
mrnumber = {3483225},
zbl = {06587876},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0242-5/}
}
TY - JOUR AU - Gao, Hongya AU - Liang, Shuang AU - Cui, Yi TI - Integrability for very weak solutions to boundary value problems of $p$-harmonic equation JO - Czechoslovak Mathematical Journal PY - 2016 SP - 101 EP - 110 VL - 66 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0242-5/ DO - 10.1007/s10587-016-0242-5 LA - en ID - 10_1007_s10587_016_0242_5 ER -
%0 Journal Article %A Gao, Hongya %A Liang, Shuang %A Cui, Yi %T Integrability for very weak solutions to boundary value problems of $p$-harmonic equation %J Czechoslovak Mathematical Journal %D 2016 %P 101-110 %V 66 %N 1 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0242-5/ %R 10.1007/s10587-016-0242-5 %G en %F 10_1007_s10587_016_0242_5
Gao, Hongya; Liang, Shuang; Cui, Yi. Integrability for very weak solutions to boundary value problems of $p$-harmonic equation. Czechoslovak Mathematical Journal, Tome 66 (2016) no. 1, pp. 101-110. doi: 10.1007/s10587-016-0242-5
[1] Bensoussan, A., Frehse, J.: Regularity Results for Nonlinear Elliptic Systems and Applications. Applied Mathematical Sciences 151 Springer, Berlin (2002). | DOI | MR | Zbl
[2] Campanato, S.: Sistemi ellittici in forma divergenza. Regolarità all'interno. Pubblicazioni della Classe di Scienze: Quaderni Italian Scuola Normale Superiore Pisa, Pisa (1980). | MR
[3] Gao, H.: Regularity for solutions to anisotropic obstacle problems. Sci. China, Math. 57 (2014), 111-122. | DOI | MR | Zbl
[4] Gao, H., Chu, Y. M.: Quasiregular Mappings and $A$-harmonic Equations. Science Press Beijing (2013), Chinese.
[5] Gao, H., Huang, Q.: Local regularity for solutions of anisotropic obstacle problems. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 75 (2012), 4761-4765. | DOI | MR | Zbl
[6] Gao, H., Liu, C., Tian, H.: Remarks on a paper by Leonetti and Siepe. J. Math. Anal. Appl. 401 (2013), 881-887. | DOI | MR | Zbl
[7] Giaquinta, M.: Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems. Annals of Mathematics Studies 105 Princeton University Press, Princeton (1983). | MR | Zbl
[8] Gilbarg, D., Trudinger, N. S.: Elliptic Partial Differential Equations of Second Order. Grundlehren der mathematischen Wissenschaften Springer, Berlin (1977). | MR
[9] Greco, L., Iwaniec, T., Sbordone, C.: Inverting the {$p$}-harmonic operator. Manuscr. Math. 92 (1997), 249-258. | DOI | MR
[10] Giusti, E.: Metodi diretti nel calcolo delle variazioni. Unione Matematica Italiana Bologna Italian (1994). | MR
[11] Iwaniec, T.: {$p$}-harmonic tensors and quasiregular mappings. Ann. Math. (2) 136 (1992), 589-624. | MR
[12] Iwaniec, T., Martin, G.: Geometric Function Theory and Nonlinear Analysis. Oxford Mathematical Monographs Oxford University Press, Oxford (2001). | MR | Zbl
[13] Iwaniec, T., Migliaccio, L., Nania, L., Sbordone, C.: Integrability and removability results for quasiregular mappings in high dimensions. Math. Scand. 75 (1994), 263-279. | DOI | MR
[14] Iwaniec, T., Sbordone, C.: Weak minima of variational integrals. J. Reine Angew. Math. 454 (1994), 143-161. | MR
[15] Iwaniec, T., Scott, C., Stroffolini, B.: Nonlinear Hodge theory on manifolds with boundary. Ann. Mat. Pura Appl. (4) 177 (1999), 37-115. | MR
[16] Kufner, A., John, O., Fučík, S.: Function Spaces. Monographs and Textsbooks on Mechanics of Solids and Fluids; Mechanics: Analysis Noordhoff International Publishing, Leyden; Academia, Praha (1977). | MR
[17] Ladyzhenskaya, O. A., Ural'tseva, N. N.: Linear and Quasilinear Elliptic Equations. Mathematics in Science and Engineering Academic Press, New York (1968). | MR | Zbl
[18] Leonetti, F., Siepe, F.: Global integrability for minimizers of anisotropic functionals. Manuscr. Math. 144 (2014), 91-98. | DOI | MR | Zbl
[19] Leonetti, F., Siepe, F.: Integrability for solutions to some anisotropic elliptic equations. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 75 (2012), 2867-2873. | DOI | MR | Zbl
[20] Lindqvist, P.: Notes on the \mbox{$p$-Laplace} Equation. Report. University of Jyväskylä Department of Mathematics and Statistics 102 University of Jyväskylä, Jyväskylä (2006). | MR
[21] Meyers, N. G., Elcrat, A.: Some results on regularity for solutions of nonlinear elliptic systems and quasi-regular functions. Duke Math. J. 42 (1975), 121-136. | DOI | MR
[22] C. B. Morrey, Jr.: Multiple Integrals in the Calculus of Variations. Die Grundlehren der mathematischen Wissenschaften 130 Springer, New York (1966). | DOI | MR | Zbl
[23] Stampacchia, G.: Èquations elliptiques du second ordre à coefficients discontinus. Séminaire de mathématiques supérieures 16 (été 1965) Les Presses de l'Université de Montréal, Montreal, Que. French (1966). | MR
Cité par Sources :