Integrability for very weak solutions to boundary value problems of $p$-harmonic equation
Czechoslovak Mathematical Journal, Tome 66 (2016) no. 1, pp. 101-110
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The paper deals with very weak solutions $u\in \theta + W_0^{1,r}(\Omega )$, $\max \{1,p-1\}r$, any very weak solution $u$ to the boundary value problem ($*$) is integrable with $$ u\in \begin {cases} \theta +L_{\rm weak}^{q^*}(\Omega ) \mbox {for } qn, \end {cases} $$ provided that $r$ is sufficiently close to $p$.
The paper deals with very weak solutions $u\in \theta + W_0^{1,r}(\Omega )$, $\max \{1,p-1\}$, to boundary value problems of the \mbox {$p$-harmonic} equation $$ \begin {cases} -\mbox {div}(|\nabla u(x)|^{p-2} \nabla u(x))=0, x\in \Omega , \\ u(x)=\theta (x), x\in \partial \Omega . \end {cases} \eqno (*) $$ We show that, under the assumption $\theta \in W^{1,q}(\Omega )$, $q>r$, any very weak solution $u$ to the boundary value problem ($*$) is integrable with $$ u\in \begin {cases} \theta +L_{\rm weak}^{q^*}(\Omega ) \mbox {for } q, \\ \theta +L_{\rm weak}^\tau (\Omega ) \mbox {for } q=n \mbox { and any } \tau \infty , \\ \theta +L^\infty (\Omega ) \mbox {for } q>n, \end {cases} $$ provided that $r$ is sufficiently close to $p$.
DOI : 10.1007/s10587-016-0242-5
Classification : 35D30, 35J25
Keywords: integrability; very weak solution; boundary value problem; $p$-harmonic equation
@article{10_1007_s10587_016_0242_5,
     author = {Gao, Hongya and Liang, Shuang and Cui, Yi},
     title = {Integrability for very weak solutions to boundary value problems of $p$-harmonic equation},
     journal = {Czechoslovak Mathematical Journal},
     pages = {101--110},
     year = {2016},
     volume = {66},
     number = {1},
     doi = {10.1007/s10587-016-0242-5},
     mrnumber = {3483225},
     zbl = {06587876},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0242-5/}
}
TY  - JOUR
AU  - Gao, Hongya
AU  - Liang, Shuang
AU  - Cui, Yi
TI  - Integrability for very weak solutions to boundary value problems of $p$-harmonic equation
JO  - Czechoslovak Mathematical Journal
PY  - 2016
SP  - 101
EP  - 110
VL  - 66
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0242-5/
DO  - 10.1007/s10587-016-0242-5
LA  - en
ID  - 10_1007_s10587_016_0242_5
ER  - 
%0 Journal Article
%A Gao, Hongya
%A Liang, Shuang
%A Cui, Yi
%T Integrability for very weak solutions to boundary value problems of $p$-harmonic equation
%J Czechoslovak Mathematical Journal
%D 2016
%P 101-110
%V 66
%N 1
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0242-5/
%R 10.1007/s10587-016-0242-5
%G en
%F 10_1007_s10587_016_0242_5
Gao, Hongya; Liang, Shuang; Cui, Yi. Integrability for very weak solutions to boundary value problems of $p$-harmonic equation. Czechoslovak Mathematical Journal, Tome 66 (2016) no. 1, pp. 101-110. doi: 10.1007/s10587-016-0242-5

[1] Bensoussan, A., Frehse, J.: Regularity Results for Nonlinear Elliptic Systems and Applications. Applied Mathematical Sciences 151 Springer, Berlin (2002). | DOI | MR | Zbl

[2] Campanato, S.: Sistemi ellittici in forma divergenza. Regolarità all'interno. Pubblicazioni della Classe di Scienze: Quaderni Italian Scuola Normale Superiore Pisa, Pisa (1980). | MR

[3] Gao, H.: Regularity for solutions to anisotropic obstacle problems. Sci. China, Math. 57 (2014), 111-122. | DOI | MR | Zbl

[4] Gao, H., Chu, Y. M.: Quasiregular Mappings and $A$-harmonic Equations. Science Press Beijing (2013), Chinese.

[5] Gao, H., Huang, Q.: Local regularity for solutions of anisotropic obstacle problems. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 75 (2012), 4761-4765. | DOI | MR | Zbl

[6] Gao, H., Liu, C., Tian, H.: Remarks on a paper by Leonetti and Siepe. J. Math. Anal. Appl. 401 (2013), 881-887. | DOI | MR | Zbl

[7] Giaquinta, M.: Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems. Annals of Mathematics Studies 105 Princeton University Press, Princeton (1983). | MR | Zbl

[8] Gilbarg, D., Trudinger, N. S.: Elliptic Partial Differential Equations of Second Order. Grundlehren der mathematischen Wissenschaften Springer, Berlin (1977). | MR

[9] Greco, L., Iwaniec, T., Sbordone, C.: Inverting the {$p$}-harmonic operator. Manuscr. Math. 92 (1997), 249-258. | DOI | MR

[10] Giusti, E.: Metodi diretti nel calcolo delle variazioni. Unione Matematica Italiana Bologna Italian (1994). | MR

[11] Iwaniec, T.: {$p$}-harmonic tensors and quasiregular mappings. Ann. Math. (2) 136 (1992), 589-624. | MR

[12] Iwaniec, T., Martin, G.: Geometric Function Theory and Nonlinear Analysis. Oxford Mathematical Monographs Oxford University Press, Oxford (2001). | MR | Zbl

[13] Iwaniec, T., Migliaccio, L., Nania, L., Sbordone, C.: Integrability and removability results for quasiregular mappings in high dimensions. Math. Scand. 75 (1994), 263-279. | DOI | MR

[14] Iwaniec, T., Sbordone, C.: Weak minima of variational integrals. J. Reine Angew. Math. 454 (1994), 143-161. | MR

[15] Iwaniec, T., Scott, C., Stroffolini, B.: Nonlinear Hodge theory on manifolds with boundary. Ann. Mat. Pura Appl. (4) 177 (1999), 37-115. | MR

[16] Kufner, A., John, O., Fučík, S.: Function Spaces. Monographs and Textsbooks on Mechanics of Solids and Fluids; Mechanics: Analysis Noordhoff International Publishing, Leyden; Academia, Praha (1977). | MR

[17] Ladyzhenskaya, O. A., Ural'tseva, N. N.: Linear and Quasilinear Elliptic Equations. Mathematics in Science and Engineering Academic Press, New York (1968). | MR | Zbl

[18] Leonetti, F., Siepe, F.: Global integrability for minimizers of anisotropic functionals. Manuscr. Math. 144 (2014), 91-98. | DOI | MR | Zbl

[19] Leonetti, F., Siepe, F.: Integrability for solutions to some anisotropic elliptic equations. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 75 (2012), 2867-2873. | DOI | MR | Zbl

[20] Lindqvist, P.: Notes on the \mbox{$p$-Laplace} Equation. Report. University of Jyväskylä Department of Mathematics and Statistics 102 University of Jyväskylä, Jyväskylä (2006). | MR

[21] Meyers, N. G., Elcrat, A.: Some results on regularity for solutions of nonlinear elliptic systems and quasi-regular functions. Duke Math. J. 42 (1975), 121-136. | DOI | MR

[22] C. B. Morrey, Jr.: Multiple Integrals in the Calculus of Variations. Die Grundlehren der mathematischen Wissenschaften 130 Springer, New York (1966). | DOI | MR | Zbl

[23] Stampacchia, G.: Èquations elliptiques du second ordre à coefficients discontinus. Séminaire de mathématiques supérieures 16 (été 1965) Les Presses de l'Université de Montréal, Montreal, Que. French (1966). | MR

Cité par Sources :