Keywords: edge-colouring; proper colouring; hereditary graph property
@article{10_1007_s10587_016_0241_6,
author = {Dorfling, Samantha and Vetr{\'\i}k, Tom\'a\v{s}},
title = {Edge-colouring of graphs and hereditary graph properties},
journal = {Czechoslovak Mathematical Journal},
pages = {87--99},
year = {2016},
volume = {66},
number = {1},
doi = {10.1007/s10587-016-0241-6},
mrnumber = {3483224},
zbl = {06587875},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0241-6/}
}
TY - JOUR AU - Dorfling, Samantha AU - Vetrík, Tomáš TI - Edge-colouring of graphs and hereditary graph properties JO - Czechoslovak Mathematical Journal PY - 2016 SP - 87 EP - 99 VL - 66 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0241-6/ DO - 10.1007/s10587-016-0241-6 LA - en ID - 10_1007_s10587_016_0241_6 ER -
%0 Journal Article %A Dorfling, Samantha %A Vetrík, Tomáš %T Edge-colouring of graphs and hereditary graph properties %J Czechoslovak Mathematical Journal %D 2016 %P 87-99 %V 66 %N 1 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0241-6/ %R 10.1007/s10587-016-0241-6 %G en %F 10_1007_s10587_016_0241_6
Dorfling, Samantha; Vetrík, Tomáš. Edge-colouring of graphs and hereditary graph properties. Czechoslovak Mathematical Journal, Tome 66 (2016) no. 1, pp. 87-99. doi: 10.1007/s10587-016-0241-6
[1] Basavaraju, M., Chandran, L. S.: A note on acyclic edge coloring of complete bipartite graphs. Discrete Math. 309 (2009), 4646-4648. | DOI | MR | Zbl
[2] Borowiecki, M., Broere, I., Frick, M., Mihók, P., Semanišin, G.: A survey of hereditary properties of graphs. Discuss. Math., Graph Theory 17 (1997), 5-50. | DOI | MR
[3] Czap, J., Mihók, P.: Fractional {$\scr Q$}-edge-coloring of graphs. Discuss. Math., Graph Theory 33 (2013), 509-519. | DOI | MR
[4] Dorfling, M. J., Dorfling, S.: Generalized edge-chromatic numbers and additive hereditary properties of graphs. Discuss. Math., Graph Theory 22 (2002), 349-359. | DOI | MR | Zbl
[5] Erd{ő}s, P., Wilson, R. J.: On the chromatic index of almost all graphs. J. Comb. Theory, Ser. B 23 (1977), 255-257. | DOI | MR
[6] Fiedorowicz, A., Ha{ł}uszczak, M., Narayanan, N.: About acyclic edge colourings of planar graphs. Inf. Process. Lett. 108 (2008), 412-417. | DOI | MR | Zbl
[7] Fouquet, J.-L., Jolivet, J.-L.: Strong edge-colorings of graphs and applications to multi-{$k$}-gons. Ars Comb. 16-A (1983), 141-150. | MR
[8] Ha{ł}uszczak, M., Vateha, P.: On the completeness of decomposable properties of graphs. Discuss. Math., Graph Theory 19 (1999), 229-236. | DOI | MR
[9] Hou, J., Wang, W., Zhang, X.: Acyclic edge coloring of planar graphs with girth at least 5. Discrete Appl. Math. 161 (2013), 2958-2967. | MR | Zbl
[10] K{ö}nig, D.: Über Graphen und ihre Anwendung auf Determinantentheorie und Mengenlehre. Math. Ann. 77 German (1916), 453-465. | DOI | MR
[11] Muthu, R., Narayanan, N., Subramanian, C. R.: On {$k$}-intersection edge colourings. Discuss. Math., Graph Theory 29 (2009), 411-418. | DOI | MR | Zbl
[12] Vizing, V. G.: On an estimate of the chromatic class of a {$p$}-graph. Diskret. Analiz No. 3 (1964), 25-30. | MR
[13] Yang, F., Chen, X.-E., Ma, C.: On the vertex-distinguishing proper edge coloring of composition of complete graph and star. Inf. Process. Lett. 114 (2014), 217-221. | DOI | MR | Zbl
Cité par Sources :