Keywords: spherically symmetric manifolds; radial Ricci curvature; radial sectional curvature; volume comparison
@article{10_1007_s10587_016_0240_7,
author = {Mao, Jing},
title = {Volume comparison theorems for manifolds with radial curvature bounded},
journal = {Czechoslovak Mathematical Journal},
pages = {71--86},
year = {2016},
volume = {66},
number = {1},
doi = {10.1007/s10587-016-0240-7},
mrnumber = {3483223},
zbl = {06587874},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0240-7/}
}
TY - JOUR AU - Mao, Jing TI - Volume comparison theorems for manifolds with radial curvature bounded JO - Czechoslovak Mathematical Journal PY - 2016 SP - 71 EP - 86 VL - 66 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0240-7/ DO - 10.1007/s10587-016-0240-7 LA - en ID - 10_1007_s10587_016_0240_7 ER -
%0 Journal Article %A Mao, Jing %T Volume comparison theorems for manifolds with radial curvature bounded %J Czechoslovak Mathematical Journal %D 2016 %P 71-86 %V 66 %N 1 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0240-7/ %R 10.1007/s10587-016-0240-7 %G en %F 10_1007_s10587_016_0240_7
Mao, Jing. Volume comparison theorems for manifolds with radial curvature bounded. Czechoslovak Mathematical Journal, Tome 66 (2016) no. 1, pp. 71-86. doi: 10.1007/s10587-016-0240-7
[1] Abresch, U.: Lower curvature bounds, Toponogov's theorem, and bounded topology. Ann. Sci. Éc. Norm. Supér. (4) 18 (1985), 651-670. | DOI | MR
[2] Barroso, C. S., Bessa, G. Pacelli: Lower bounds for the first Laplacian eigenvalue of geodesic balls of spherically symmetric manifolds. Int. J. Appl. Math. Stat. 6 (2006), Article No. D06, 82-86. | MR
[3] Chavel, I.: Eigenvalues in Riemannian Geometry. Pure and Applied Mathematics 115 Academic Press, Orlando (1984). | MR
[4] Cheeger, J., Yau, S. T.: A lower bound for the heat kernel. Commun. Pure Appl. Math. 34 (1981), 465-480. | DOI | MR
[5] Cheng, S.-Y.: Eigenfunctions and eigenvalues of Laplacian. Differential Geometry Proc. Sympos. Pure Math. 27, Stanford Univ., Stanford, Calif., 1973, Part 2 Amer. Math. Soc., Providence (1975), 185-193 S. S. Chern et al. | MR
[6] Cheng, S.-Y.: Eigenvalue comparison theorems and its geometric applications. Math. Z. 143 (1975), 289-297. | DOI | MR
[7] Elerath, D.: An improved Toponogov comparison theorem for nonnegatively curved manifolds. J. Differ. Geom. 15 (1980), 187-216. | DOI | MR
[8] Freitas, P., Mao, J., Salavessa, I.: Spherical symmetrization and the first eigenvalue of geodesic disks on manifolds. Calc. Var. Partial Differ. Equ. 51 (2014), 701-724. | DOI | MR | Zbl
[9] Gage, M. E.: Upper bounds for the first eigenvalue of the Laplace-Beltrami operator. Indiana Univ. Math. J. 29 (1980), 897-912. | DOI | MR
[10] Hu, Z., Jin, Y., Xu, S.: A volume comparison estimate with radially symmetric Ricci curvature lower bound and its applications. Int. J. Math. Math. Sci. 2010 (2010), Article ID 758531, 14 pages. | MR | Zbl
[11] Itokawa, Y., Machigashira, Y., Shiohama, K.: Maximal diameter theorems for manifolds with restricted radial curvature. Proc. of the 5th Pacific Rim Geometry Conf., Tôhoku University, Sendai, Japan, 2000 Tohoku Math. Publ. 20 Tôhoku University, Sendai (2001), 61-68 S. Nishikawa. | MR | Zbl
[12] Kasue, A.: A Laplacian comparison theorem and function theoretic properties of a complete Riemannian manifold. Jap. J. Math., New Ser. 8 (1982), 309-341. | DOI | MR
[13] Katz, N. N., Kondo, K.: Generalized space forms. Trans. Am. Math. Soc. 354 (2002), 2279-2284. | DOI | MR | Zbl
[14] Klingenberg, W.: Contributions to Riemannian geometry in the large. Ann. Math. (2) 69 (1959), 654-666. | DOI | MR
[15] Mao, J.: Eigenvalue inequalities for the {$p$}-Laplacian on a Riemannian manifold and estimates for the heat kernel. J. Math. Pures Appl. (9) 101 (2014), 372-393. | DOI | MR | Zbl
[16] Mao, J.: Eigenvalue Estimation and some Results on Finite Topological Type. Ph.D. thesis Mathematics department of Instituto Superior Técnico-Universidade Técnica de Lisboa (2013).
[17] Petersen, P.: Riemannian Geometry. Graduate Texts in Mathematics 171 Springer, New York (2006). | MR | Zbl
[18] Shiohama, K.: Comparison theorems for manifolds with radial curvature bounded below. Differential Geometry, Proc. of the First International Symposium, Josai University, Saitama, Japan, 2001, Josai Math. Monogr. 3 Josai University, Graduate School of Science, Saitama (2001), 81-91 Q.-M. Cheng. | MR | Zbl
[19] Zhu, S.: The comparison geometry of Ricci curvature. Comparison Geometry, Berkeley, 1993-1994 Math. Sci. Res. Inst. Publ. 30 Cambridge University, Cambridge (1997), 221-262 K. Grove et al. | MR
Cité par Sources :