Keywords: $\alpha $-analytic function; polyanalytic function; zero set; Radó's theorem
@article{10_1007_s10587_016_0238_1,
author = {Daghighi, Abtin and Wikstr\"om, Frank},
title = {A pure smoothness condition for {Rad\'o's} theorem for $\alpha $-analytic functions},
journal = {Czechoslovak Mathematical Journal},
pages = {57--62},
year = {2016},
volume = {66},
number = {1},
doi = {10.1007/s10587-016-0238-1},
mrnumber = {3483221},
zbl = {06587872},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0238-1/}
}
TY - JOUR AU - Daghighi, Abtin AU - Wikström, Frank TI - A pure smoothness condition for Radó's theorem for $\alpha $-analytic functions JO - Czechoslovak Mathematical Journal PY - 2016 SP - 57 EP - 62 VL - 66 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0238-1/ DO - 10.1007/s10587-016-0238-1 LA - en ID - 10_1007_s10587_016_0238_1 ER -
%0 Journal Article %A Daghighi, Abtin %A Wikström, Frank %T A pure smoothness condition for Radó's theorem for $\alpha $-analytic functions %J Czechoslovak Mathematical Journal %D 2016 %P 57-62 %V 66 %N 1 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0238-1/ %R 10.1007/s10587-016-0238-1 %G en %F 10_1007_s10587_016_0238_1
Daghighi, Abtin; Wikström, Frank. A pure smoothness condition for Radó's theorem for $\alpha $-analytic functions. Czechoslovak Mathematical Journal, Tome 66 (2016) no. 1, pp. 57-62. doi: 10.1007/s10587-016-0238-1
[1] Avanissian, V., Traore, A.: Extension des théorèmes de Hartogs et de Lindelöf aux fonctions polyanalytiques de plusieurs variables. French C. R. Acad. Sci., Paris Sér. A-B 291 (1980), A263--A265. | MR
[2] Avanissian, V., Traore, A.: Sur les fonctions polyanalytiques de plusiers variables. C. R. Acad. Sci., Paris Sér. French A-B 286 (1978), A743--A746. | MR
[3] Axler, S., Bourdon, P., Ramey, W.: Harmonic Function Theory. Graduate Texts in Mathematics 137 Springer, New York (1992). | MR
[4] Balk, M. B.: Polyanalytic functions and their generalizations. Complex analysis I. Encycl. Math. Sci. 85 197-253 (1997).
[5] Balk, M. B.: A uniqueness theorem for polyanalytic functions. Izv. Akad. Nauk Armjan. SSR Ser. Fiz.-Mat. Nauk Russian 18 (1965), 3-14. | MR
[6] Cartan, H.: Sur une extension d'un theorème de Rad{ó}. French Math. Ann. 125 (1952), 49-50. | DOI | MR
[7] Chesnokov, I. Y.: On Removable Singularities of the Solution of Linear Differential Equations. Russian Dissertation, MGU Moskva (1991).
[8] Chesnokov, I. Y.: Removable singularities for solutions of linear partial differential equations. Mosc. Univ. Math. Bull. 45 37-38 (1990), translation from Vestn. Mosk. Univ., Ser. I 1990 (1990), 66-68 Russian. | MR
[9] Harvey, R., Polking, J.: Removable singularities of solutions of linear partial differential equations. Acta Math. 125 (1970), 39-56. | DOI | MR
[10] Král, J.: Extension results of the Radó type. Rev. Roum. Math. Pures Appl. 36 (1991), 71-76. | MR
[11] Král, J.: Some extension results concerning harmonic functions. J. London Math. Soc. 28 (1983), 62-70. | DOI | MR
[12] Krantz, S. G.: Function Theory of Several Complex Variables. American Mathematical Society Chelsea Publishing, Providence (2001). | MR | Zbl
[13] Pokrovskii, A. V.: Removable singularities of solutions of elliptic equations. J. Math. Sci. 160 (2009), 61-83. | DOI | MR | Zbl
[14] Radó, T.: Über eine nicht fortsetzbare Riemannsche Mannigfaltigkeit. Math. Z. 20 (1924), 1-6 German. | DOI | MR
[15] Tarkhanov, N. N.: The Analysis of Solutions of Elliptic Equations. Kluwer Academic Publishers Dordrecht (1997). | MR
Cité par Sources :