On the arithmetic of the hyperelliptic curve $y^2=x^n+a$
Czechoslovak Mathematical Journal, Tome 66 (2016) no. 1, pp. 35-40 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We study the arithmetic properties of hyperelliptic curves given by the affine equation $y^2=x^n+a$ by exploiting the structure of the automorphism groups. We show that these curves satisfy Lang's conjecture about the covering radius (for some special covering maps).
We study the arithmetic properties of hyperelliptic curves given by the affine equation $y^2=x^n+a$ by exploiting the structure of the automorphism groups. We show that these curves satisfy Lang's conjecture about the covering radius (for some special covering maps).
DOI : 10.1007/s10587-016-0236-3
Classification : 11G30, 14H25
Keywords: hyperelliptic curve; Lang's conjecture
@article{10_1007_s10587_016_0236_3,
     author = {Akta\c{s}, Kevser and \c{S}enay, Hasan},
     title = {On the arithmetic of the hyperelliptic curve $y^2=x^n+a$},
     journal = {Czechoslovak Mathematical Journal},
     pages = {35--40},
     year = {2016},
     volume = {66},
     number = {1},
     doi = {10.1007/s10587-016-0236-3},
     mrnumber = {3483219},
     zbl = {06587870},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0236-3/}
}
TY  - JOUR
AU  - Aktaş, Kevser
AU  - Şenay, Hasan
TI  - On the arithmetic of the hyperelliptic curve $y^2=x^n+a$
JO  - Czechoslovak Mathematical Journal
PY  - 2016
SP  - 35
EP  - 40
VL  - 66
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0236-3/
DO  - 10.1007/s10587-016-0236-3
LA  - en
ID  - 10_1007_s10587_016_0236_3
ER  - 
%0 Journal Article
%A Aktaş, Kevser
%A Şenay, Hasan
%T On the arithmetic of the hyperelliptic curve $y^2=x^n+a$
%J Czechoslovak Mathematical Journal
%D 2016
%P 35-40
%V 66
%N 1
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0236-3/
%R 10.1007/s10587-016-0236-3
%G en
%F 10_1007_s10587_016_0236_3
Aktaş, Kevser; Şenay, Hasan. On the arithmetic of the hyperelliptic curve $y^2=x^n+a$. Czechoslovak Mathematical Journal, Tome 66 (2016) no. 1, pp. 35-40. doi: 10.1007/s10587-016-0236-3

[1] Birkenhake, C., Lange, H.: Complex Abelian Varieties. Grundlehren der Mathematischen Wissenschaften 302 Springer, Berlin (2004). | MR | Zbl

[2] Lang, S.: Hyperbolic and Diophantine analysis. Bull. Am. Math. Soc., New Ser. 14 (1986), 159-205. | DOI | MR

[3] Wolfart, J.: The `Obvious' part of Belyi's theorem and Riemann surfaces with many automorphisms. Geometric Galois Actions. 1. Around Grothendieck's "Esquisse d'un Programme" L. Schneps et al. Proc. Conf. on geometry and arithmetic of moduli spaces, Luminy, France, 1995. Lond. Math. Soc. Lect. Note Ser. 242 Cambridge University Press, Cambridge (1997), 97-112. | MR

[4] Wolfart, J.: Taylorentwicklungen automorpher Formen und ein Transzendenzproblem aus der Uniformisierungstheorie. Abh. Math. Semin. Univ. Hamb. 54 German (1984), 25-33. | DOI | MR

[5] Wolfart, J., Wüstholz, G.: Der Überlagerungsradius gewisser algebraischer Kurven und die Werte der Betafunktion an rationalen Stellen. Math. Ann. 273 (1985), German 1-15. | DOI | MR

Cité par Sources :