On the arithmetic of the hyperelliptic curve $y^2=x^n+a$
Czechoslovak Mathematical Journal, Tome 66 (2016) no. 1, pp. 35-40
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We study the arithmetic properties of hyperelliptic curves given by the affine equation $y^2=x^n+a$ by exploiting the structure of the automorphism groups. We show that these curves satisfy Lang's conjecture about the covering radius (for some special covering maps).
DOI :
10.1007/s10587-016-0236-3
Classification :
11G30, 14H25
Keywords: hyperelliptic curve; Lang's conjecture
Keywords: hyperelliptic curve; Lang's conjecture
@article{10_1007_s10587_016_0236_3,
author = {Akta\c{s}, Kevser and \c{S}enay, Hasan},
title = {On the arithmetic of the hyperelliptic curve $y^2=x^n+a$},
journal = {Czechoslovak Mathematical Journal},
pages = {35--40},
publisher = {mathdoc},
volume = {66},
number = {1},
year = {2016},
doi = {10.1007/s10587-016-0236-3},
mrnumber = {3483219},
zbl = {06587870},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0236-3/}
}
TY - JOUR AU - Aktaş, Kevser AU - Şenay, Hasan TI - On the arithmetic of the hyperelliptic curve $y^2=x^n+a$ JO - Czechoslovak Mathematical Journal PY - 2016 SP - 35 EP - 40 VL - 66 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0236-3/ DO - 10.1007/s10587-016-0236-3 LA - en ID - 10_1007_s10587_016_0236_3 ER -
%0 Journal Article %A Aktaş, Kevser %A Şenay, Hasan %T On the arithmetic of the hyperelliptic curve $y^2=x^n+a$ %J Czechoslovak Mathematical Journal %D 2016 %P 35-40 %V 66 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0236-3/ %R 10.1007/s10587-016-0236-3 %G en %F 10_1007_s10587_016_0236_3
Aktaş, Kevser; Şenay, Hasan. On the arithmetic of the hyperelliptic curve $y^2=x^n+a$. Czechoslovak Mathematical Journal, Tome 66 (2016) no. 1, pp. 35-40. doi: 10.1007/s10587-016-0236-3
Cité par Sources :