Keywords: composition operator; weighted Dirichlet space; isometry
@article{10_1007_s10587_016_0235_4,
author = {Han, Shi-An and Zhou, Ze-Hua},
title = {Isometric composition operators on weighted {Dirichlet} space},
journal = {Czechoslovak Mathematical Journal},
pages = {27--34},
year = {2016},
volume = {66},
number = {1},
doi = {10.1007/s10587-016-0235-4},
mrnumber = {3483218},
zbl = {06587869},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0235-4/}
}
TY - JOUR AU - Han, Shi-An AU - Zhou, Ze-Hua TI - Isometric composition operators on weighted Dirichlet space JO - Czechoslovak Mathematical Journal PY - 2016 SP - 27 EP - 34 VL - 66 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0235-4/ DO - 10.1007/s10587-016-0235-4 LA - en ID - 10_1007_s10587_016_0235_4 ER -
%0 Journal Article %A Han, Shi-An %A Zhou, Ze-Hua %T Isometric composition operators on weighted Dirichlet space %J Czechoslovak Mathematical Journal %D 2016 %P 27-34 %V 66 %N 1 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0235-4/ %R 10.1007/s10587-016-0235-4 %G en %F 10_1007_s10587_016_0235_4
Han, Shi-An; Zhou, Ze-Hua. Isometric composition operators on weighted Dirichlet space. Czechoslovak Mathematical Journal, Tome 66 (2016) no. 1, pp. 27-34. doi: 10.1007/s10587-016-0235-4
[1] Banach, S.: Théorie des Opérations Linéaires. Éditions Jacques Gabay, Sceaux (1993). Reprint of the 1932 original French. | MR
[2] Carswell, B. J., Hammond, C.: Composition operators with maximal norm on weighted Bergman spaces. Proc. Am. Math. Soc. 134 (2006), 2599-2605. | DOI | MR | Zbl
[3] Cowen, C. C., MacCluer, B. D.: Composition Operators on Spaces of Analytic Functions. Studies in Advanced Mathematics CRC Press, Boca Raton (1995). | MR | Zbl
[4] Fleming, R. J., Jamison, J. E.: Isometries on Banach Spaces: Function Spaces. Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics 129 Chapman and Hall/CRC, Boca Raton (2003). | MR | Zbl
[5] Jaoua, N.: Isometric composition operators on the weighted Hardy spaces. Math. Nachr. 283 (2010), 1629-1636. | DOI | MR | Zbl
[6] Martín, M. J., Vukoti{ć}, D.: Isometries of some classical function spaces among the composition operators. A. L. Matheson et al. Recent Advances in Operator-Related Function Theory. Proc. Conf., Dublin, Ireland, 2004 Contemporary Mathematics 393 American Mathematical Society, Providence (2006), 133-138. | MR | Zbl
[7] Martín, M. J., Vukoti{ć}, D.: Isometries of the Dirichlet space among the composition operators. Proc. Am. Math. Soc. 134 (2006), 1701-1705. | DOI | MR | Zbl
[8] Nordgren, E. A.: Composition operators. Can. J. Math. 20 (1968), 442-449. | DOI | MR | Zbl
[9] Ryff, J. V.: Subordinate {$H^p$} functions. Duke Math. J. 33 (1966), 347-354. | DOI | MR
[10] Shapiro, J. H.: What do composition operators know about inner functions?. Monatsh. Math. 130 (2000), 57-70. | DOI | MR
[11] Shapiro, J. H.: Composition Operators and Classical Function Theory. Universitext: Tracts in Mathematics Springer, New York (1993). | MR | Zbl
Cité par Sources :