Isometric composition operators on weighted Dirichlet space
Czechoslovak Mathematical Journal, Tome 66 (2016) no. 1, pp. 27-34 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We investigate isometric composition operators on the weighted Dirichlet space $\mathcal {D}_\alpha $ with standard weights $(1-|z|^2)^\alpha $, $\alpha >-1$. The main technique used comes from Martín and Vukotić who completely characterized the isometric composition operators on the classical Dirichlet space $\mathcal {D}$. We solve some of these but not in general. We also investigate the situation when $\mathcal {D}_\alpha $ is equipped with another equivalent norm.
We investigate isometric composition operators on the weighted Dirichlet space $\mathcal {D}_\alpha $ with standard weights $(1-|z|^2)^\alpha $, $\alpha >-1$. The main technique used comes from Martín and Vukotić who completely characterized the isometric composition operators on the classical Dirichlet space $\mathcal {D}$. We solve some of these but not in general. We also investigate the situation when $\mathcal {D}_\alpha $ is equipped with another equivalent norm.
DOI : 10.1007/s10587-016-0235-4
Classification : 46B04, 47B33, 47B38
Keywords: composition operator; weighted Dirichlet space; isometry
@article{10_1007_s10587_016_0235_4,
     author = {Han, Shi-An and Zhou, Ze-Hua},
     title = {Isometric composition operators on weighted {Dirichlet} space},
     journal = {Czechoslovak Mathematical Journal},
     pages = {27--34},
     year = {2016},
     volume = {66},
     number = {1},
     doi = {10.1007/s10587-016-0235-4},
     mrnumber = {3483218},
     zbl = {06587869},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0235-4/}
}
TY  - JOUR
AU  - Han, Shi-An
AU  - Zhou, Ze-Hua
TI  - Isometric composition operators on weighted Dirichlet space
JO  - Czechoslovak Mathematical Journal
PY  - 2016
SP  - 27
EP  - 34
VL  - 66
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0235-4/
DO  - 10.1007/s10587-016-0235-4
LA  - en
ID  - 10_1007_s10587_016_0235_4
ER  - 
%0 Journal Article
%A Han, Shi-An
%A Zhou, Ze-Hua
%T Isometric composition operators on weighted Dirichlet space
%J Czechoslovak Mathematical Journal
%D 2016
%P 27-34
%V 66
%N 1
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0235-4/
%R 10.1007/s10587-016-0235-4
%G en
%F 10_1007_s10587_016_0235_4
Han, Shi-An; Zhou, Ze-Hua. Isometric composition operators on weighted Dirichlet space. Czechoslovak Mathematical Journal, Tome 66 (2016) no. 1, pp. 27-34. doi: 10.1007/s10587-016-0235-4

[1] Banach, S.: Théorie des Opérations Linéaires. Éditions Jacques Gabay, Sceaux (1993). Reprint of the 1932 original French. | MR

[2] Carswell, B. J., Hammond, C.: Composition operators with maximal norm on weighted Bergman spaces. Proc. Am. Math. Soc. 134 (2006), 2599-2605. | DOI | MR | Zbl

[3] Cowen, C. C., MacCluer, B. D.: Composition Operators on Spaces of Analytic Functions. Studies in Advanced Mathematics CRC Press, Boca Raton (1995). | MR | Zbl

[4] Fleming, R. J., Jamison, J. E.: Isometries on Banach Spaces: Function Spaces. Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics 129 Chapman and Hall/CRC, Boca Raton (2003). | MR | Zbl

[5] Jaoua, N.: Isometric composition operators on the weighted Hardy spaces. Math. Nachr. 283 (2010), 1629-1636. | DOI | MR | Zbl

[6] Martín, M. J., Vukoti{ć}, D.: Isometries of some classical function spaces among the composition operators. A. L. Matheson et al. Recent Advances in Operator-Related Function Theory. Proc. Conf., Dublin, Ireland, 2004 Contemporary Mathematics 393 American Mathematical Society, Providence (2006), 133-138. | MR | Zbl

[7] Martín, M. J., Vukoti{ć}, D.: Isometries of the Dirichlet space among the composition operators. Proc. Am. Math. Soc. 134 (2006), 1701-1705. | DOI | MR | Zbl

[8] Nordgren, E. A.: Composition operators. Can. J. Math. 20 (1968), 442-449. | DOI | MR | Zbl

[9] Ryff, J. V.: Subordinate {$H^p$} functions. Duke Math. J. 33 (1966), 347-354. | DOI | MR

[10] Shapiro, J. H.: What do composition operators know about inner functions?. Monatsh. Math. 130 (2000), 57-70. | DOI | MR

[11] Shapiro, J. H.: Composition Operators and Classical Function Theory. Universitext: Tracts in Mathematics Springer, New York (1993). | MR | Zbl

Cité par Sources :