Packing constant for Cesàro-Orlicz sequence spaces
Czechoslovak Mathematical Journal, Tome 66 (2016) no. 1, pp. 13-25
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The packing constant is an important and interesting geometric parameter of Banach spaces. Inspired by the packing constant for Orlicz sequence spaces, the main purpose of this paper is calculating the Kottman constant and the packing constant of the Cesàro-Orlicz sequence spaces (${\rm ces}_{\phi }$) defined by an Orlicz function $\phi $ equipped with the Luxemburg norm. In order to compute the constants, the paper gives two formulas. On the base of these formulas one can easily obtain the packing constant for the Cesàro sequence space ${\rm ces}_{p}$ and some other sequence spaces. Finally, a new constant $\widetilde {D}(X)$, which seems to be relevant to the packing constant, is given.
The packing constant is an important and interesting geometric parameter of Banach spaces. Inspired by the packing constant for Orlicz sequence spaces, the main purpose of this paper is calculating the Kottman constant and the packing constant of the Cesàro-Orlicz sequence spaces (${\rm ces}_{\phi }$) defined by an Orlicz function $\phi $ equipped with the Luxemburg norm. In order to compute the constants, the paper gives two formulas. On the base of these formulas one can easily obtain the packing constant for the Cesàro sequence space ${\rm ces}_{p}$ and some other sequence spaces. Finally, a new constant $\widetilde {D}(X)$, which seems to be relevant to the packing constant, is given.
DOI : 10.1007/s10587-016-0234-5
Classification : 46A45, 46B20
Keywords: packing constant; Cesàro sequence space; Cesàro-Orlicz sequence space
@article{10_1007_s10587_016_0234_5,
     author = {Ma, Zhen-Hua and Jiang, Li-Ning and Xin, Qiao-Ling},
     title = {Packing constant for {Ces\`aro-Orlicz} sequence spaces},
     journal = {Czechoslovak Mathematical Journal},
     pages = {13--25},
     year = {2016},
     volume = {66},
     number = {1},
     doi = {10.1007/s10587-016-0234-5},
     mrnumber = {3483217},
     zbl = {06587868},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0234-5/}
}
TY  - JOUR
AU  - Ma, Zhen-Hua
AU  - Jiang, Li-Ning
AU  - Xin, Qiao-Ling
TI  - Packing constant for Cesàro-Orlicz sequence spaces
JO  - Czechoslovak Mathematical Journal
PY  - 2016
SP  - 13
EP  - 25
VL  - 66
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0234-5/
DO  - 10.1007/s10587-016-0234-5
LA  - en
ID  - 10_1007_s10587_016_0234_5
ER  - 
%0 Journal Article
%A Ma, Zhen-Hua
%A Jiang, Li-Ning
%A Xin, Qiao-Ling
%T Packing constant for Cesàro-Orlicz sequence spaces
%J Czechoslovak Mathematical Journal
%D 2016
%P 13-25
%V 66
%N 1
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0234-5/
%R 10.1007/s10587-016-0234-5
%G en
%F 10_1007_s10587_016_0234_5
Ma, Zhen-Hua; Jiang, Li-Ning; Xin, Qiao-Ling. Packing constant for Cesàro-Orlicz sequence spaces. Czechoslovak Mathematical Journal, Tome 66 (2016) no. 1, pp. 13-25. doi: 10.1007/s10587-016-0234-5

[1] Burlak, J. A. C., Rankin, R. A., Robertson, A. P.: The packing of spheres in the space $l_{p}$. Proc. Glasg. Math. Assoc. 4 (1958), 22-25. | DOI | MR

[2] Chen, S.: Geometry of Orlicz Spaces. With a preface by Julian Musielak Dissertationes Math. (Rozprawy Mat.) 356 (1996), 204. | MR | Zbl

[3] Cui, Y., Hudzik, H.: Packing constant for cesaro sequence spaces. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 47 (2001), 2695-2702. | DOI | MR | Zbl

[4] Cui, Y., Hudzik, H.: On the banach-saks and weak banach-saks properties of some banach sequence spaces. Acta Sci. Math. 65 (1999), 179-187. | MR

[5] Cui, Y., Hudzik, H., Petrot, N., Suantai, S., Szymaszkiewicz, A.: Basic topological and geometric properties of cesàro-orlicz spaces. Proc. Indian Acad. Sci., Math. Sci. 115 (2005), 461-476. | DOI | MR

[6] Foralewski, P., Hudzik, H., Szymaszkiewicz, A.: Some remarks on cesàro-orlicz sequence spaces. Math. Inequal. Appl. 13 (2010), 363-386. | MR | Zbl

[7] Foralewski, P., Hudzik, H., Szymaszkiewicz, A.: Local rotundity structure of cesàro-orlicz sequence spaces. J. Math. Anal. Appl. 345 (2008), 410-419. | DOI | MR | Zbl

[8] Hudzik, H.: Every nonreflexive banach lattice has the packing constant equal to {$1/2$}. Collect. Math. 44 (1993), 129-134. | MR

[9] Kottman, C. A.: Packing and reflexivity in banach spaces. Trans. Am. Math. Soc. 150 (1970), 565-576. | DOI | MR

[10] Kubiak, D.: A note on cesàro-orlicz sequence spaces. J. Math. Anal. Appl. 349 (2009), 291-296. | DOI | MR | Zbl

[11] Lee, P. Y.: Cesàro sequence spaces. Math. Chron. 13 (1984), 29-45. | MR | Zbl

[12] Lim, S. K., Lee, P. Y.: An orlicz extension of cesàro sequence spaces. Ann. Soc. Math. Pol., Ser. I, Commentat. Math. 28 (1988), 117-128. | MR

[13] Luxemburg, W. A. J.: Banach Function Spaces. Thesis Technische Hogeschool te Delft (1955). | MR

[14] Ma, Z., Cui, Y.: Some important geometric properties in cesàro-orlicz sequence spaces. Adv. Math., Beijing 42 (2013), 348-354. | MR | Zbl

[15] Maligranda, L.: Orlicz Spaces and Interpolation. Seminars in Mathematics 5 Univ. Estadual de Campinas, Dep. de Matemática, Campinas (1989). | MR | Zbl

[16] Maligranda, L., Petrot, N., Suantai, S.: On the james constant and $B$-convexity of cesàro and cesàro-orlicz sequences spaces. J. Math. Anal. Appl. 326 (2007), 312-331. | DOI | MR

[17] Musielak, J.: Orlicz Spaces and Modular Spaces. Lecture Notes in Mathematics 1034 Springer, Berlin (1983). | MR | Zbl

[18] Rankin, R. A.: On packings of spheres in hilbert space. Proc. Glasg. Math. Assoc. 2 (1955), 145-146. | DOI | MR

[19] Saejung, S.: Another look at cesàro sequence spaces. J. Math. Anal. Appl. 366 (2010), 530-537. | DOI | MR | Zbl

[20] Webb, J. R. L., Zhao, W.: On connections between set and ball measures of noncompactness. Bull. Lond. Math. Soc. 22 (1990), 471-477. | DOI | MR

[21] Wu, C. X., Lin, P., Piao, Q. Y., Lee, P. Y.: Sequence Space and Its Application. Harbin Institute of Technology Press Chinese (2001).

Cité par Sources :