A new continuous dependence result for impulsive retarded functional differential equations
Czechoslovak Mathematical Journal, Tome 66 (2016) no. 1, pp. 1-12
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We consider a large class of impulsive retarded functional differential equations (IRFDEs) and prove a result concerning uniqueness of solutions of impulsive FDEs. Also, we present a new result on continuous dependence of solutions on parameters for this class of equations. More precisely, we consider a sequence of initial value problems for impulsive RFDEs in the above setting, with convergent right-hand sides, convergent impulse operators and uniformly convergent initial data. We assume that the limiting equation is an impulsive RFDE whose initial condition is the uniform limit of the sequence of the initial data and whose solution exists and is unique. Then, for sufficient large indexes, the elements of the sequence of impulsive retarded initial value problem admit a unique solution and such a sequence of solutions converges to the solution of the limiting Cauchy problem.
We consider a large class of impulsive retarded functional differential equations (IRFDEs) and prove a result concerning uniqueness of solutions of impulsive FDEs. Also, we present a new result on continuous dependence of solutions on parameters for this class of equations. More precisely, we consider a sequence of initial value problems for impulsive RFDEs in the above setting, with convergent right-hand sides, convergent impulse operators and uniformly convergent initial data. We assume that the limiting equation is an impulsive RFDE whose initial condition is the uniform limit of the sequence of the initial data and whose solution exists and is unique. Then, for sufficient large indexes, the elements of the sequence of impulsive retarded initial value problem admit a unique solution and such a sequence of solutions converges to the solution of the limiting Cauchy problem.
DOI : 10.1007/s10587-016-0233-6
Classification : 34K05, 34K45
Keywords: retarded functional differential equation; impulse local existence; impulse local existence uniqueness; continuous dependence on parameters
@article{10_1007_s10587_016_0233_6,
     author = {Federson, M\'arcia and Mesquita, Jaqueline Godoy},
     title = {A new continuous dependence result for impulsive retarded functional differential equations},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1--12},
     year = {2016},
     volume = {66},
     number = {1},
     doi = {10.1007/s10587-016-0233-6},
     mrnumber = {3483216},
     zbl = {06587867},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0233-6/}
}
TY  - JOUR
AU  - Federson, Márcia
AU  - Mesquita, Jaqueline Godoy
TI  - A new continuous dependence result for impulsive retarded functional differential equations
JO  - Czechoslovak Mathematical Journal
PY  - 2016
SP  - 1
EP  - 12
VL  - 66
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0233-6/
DO  - 10.1007/s10587-016-0233-6
LA  - en
ID  - 10_1007_s10587_016_0233_6
ER  - 
%0 Journal Article
%A Federson, Márcia
%A Mesquita, Jaqueline Godoy
%T A new continuous dependence result for impulsive retarded functional differential equations
%J Czechoslovak Mathematical Journal
%D 2016
%P 1-12
%V 66
%N 1
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0233-6/
%R 10.1007/s10587-016-0233-6
%G en
%F 10_1007_s10587_016_0233_6
Federson, Márcia; Mesquita, Jaqueline Godoy. A new continuous dependence result for impulsive retarded functional differential equations. Czechoslovak Mathematical Journal, Tome 66 (2016) no. 1, pp. 1-12. doi: 10.1007/s10587-016-0233-6

[1] Federson, M., Mesquita, J. G.: Averaging principle for functional differential equations with impulses at variable times via Kurzweil equations. Differ. Integral Equ. 26 (2013), 1287-1320. | MR | Zbl

[2] Federson, M., Mesquita, J. G.: Averaging for retarded functional differential equations. J. Math. Anal. Appl. 382 (2011), 77-85. | DOI | MR | Zbl

[3] Federson, M., Schwabik, Š.: Generalized ODE approach to impulsive retarded functional differential equations. Differ. Integral Equ. 19 (2006), 1201-1234. | MR | Zbl

[4] Fra{ň}kov{á}, D.: Regulated functions. Math. Bohem. 116 (1991), 20-59. | MR

[5] Hale, J. K., Lunel, S. M. Verduyn: Introduction to Functional Differential Equations. Applied Mathematical Sciences 99 Springer, New York (1993). | DOI | MR

[6] H{ö}nig, C. S.: Volterra Stieltjes-Integral Equations. Functional Analytic Methods; Linear Constraints. North-Holland Mathematical Studies 16 North-Holland Publishing, \hbox{Amsterdam}-Oxford; American Elsevier Publishing, New York (1975). | MR

[7] Kurzweil, J.: Generalized ordinary differential equations and continuous dependence on a parameter. Czech. Math. J. 7 (82) (1957), 418-449. | MR | Zbl

[8] Lakshmikantham, V., Baĭnov, D. D., Simeonov, P. S.: Theory of Impulsive Differential Equations. Series in Modern Applied Mathematics Vol. 6 World Scientific, Singapore (1989). | MR

[9] Liu, X., Ballinger, G.: Continuous dependence on initial values for impulsive delay differential equations. Appl. Math. Lett. 17 (2004), 483-490. | DOI | MR | Zbl

[10] Schwabik, Š.: Generalized Ordinary Differential Equations. Series in Real Analysis 5 World Scientific, Singapore (1992). | MR | Zbl

Cité par Sources :