Keywords: retarded functional differential equation; impulse local existence; impulse local existence uniqueness; continuous dependence on parameters
@article{10_1007_s10587_016_0233_6,
author = {Federson, M\'arcia and Mesquita, Jaqueline Godoy},
title = {A new continuous dependence result for impulsive retarded functional differential equations},
journal = {Czechoslovak Mathematical Journal},
pages = {1--12},
year = {2016},
volume = {66},
number = {1},
doi = {10.1007/s10587-016-0233-6},
mrnumber = {3483216},
zbl = {06587867},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0233-6/}
}
TY - JOUR AU - Federson, Márcia AU - Mesquita, Jaqueline Godoy TI - A new continuous dependence result for impulsive retarded functional differential equations JO - Czechoslovak Mathematical Journal PY - 2016 SP - 1 EP - 12 VL - 66 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0233-6/ DO - 10.1007/s10587-016-0233-6 LA - en ID - 10_1007_s10587_016_0233_6 ER -
%0 Journal Article %A Federson, Márcia %A Mesquita, Jaqueline Godoy %T A new continuous dependence result for impulsive retarded functional differential equations %J Czechoslovak Mathematical Journal %D 2016 %P 1-12 %V 66 %N 1 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0233-6/ %R 10.1007/s10587-016-0233-6 %G en %F 10_1007_s10587_016_0233_6
Federson, Márcia; Mesquita, Jaqueline Godoy. A new continuous dependence result for impulsive retarded functional differential equations. Czechoslovak Mathematical Journal, Tome 66 (2016) no. 1, pp. 1-12. doi: 10.1007/s10587-016-0233-6
[1] Federson, M., Mesquita, J. G.: Averaging principle for functional differential equations with impulses at variable times via Kurzweil equations. Differ. Integral Equ. 26 (2013), 1287-1320. | MR | Zbl
[2] Federson, M., Mesquita, J. G.: Averaging for retarded functional differential equations. J. Math. Anal. Appl. 382 (2011), 77-85. | DOI | MR | Zbl
[3] Federson, M., Schwabik, Š.: Generalized ODE approach to impulsive retarded functional differential equations. Differ. Integral Equ. 19 (2006), 1201-1234. | MR | Zbl
[4] Fra{ň}kov{á}, D.: Regulated functions. Math. Bohem. 116 (1991), 20-59. | MR
[5] Hale, J. K., Lunel, S. M. Verduyn: Introduction to Functional Differential Equations. Applied Mathematical Sciences 99 Springer, New York (1993). | DOI | MR
[6] H{ö}nig, C. S.: Volterra Stieltjes-Integral Equations. Functional Analytic Methods; Linear Constraints. North-Holland Mathematical Studies 16 North-Holland Publishing, \hbox{Amsterdam}-Oxford; American Elsevier Publishing, New York (1975). | MR
[7] Kurzweil, J.: Generalized ordinary differential equations and continuous dependence on a parameter. Czech. Math. J. 7 (82) (1957), 418-449. | MR | Zbl
[8] Lakshmikantham, V., Baĭnov, D. D., Simeonov, P. S.: Theory of Impulsive Differential Equations. Series in Modern Applied Mathematics Vol. 6 World Scientific, Singapore (1989). | MR
[9] Liu, X., Ballinger, G.: Continuous dependence on initial values for impulsive delay differential equations. Appl. Math. Lett. 17 (2004), 483-490. | DOI | MR | Zbl
[10] Schwabik, Š.: Generalized Ordinary Differential Equations. Series in Real Analysis 5 World Scientific, Singapore (1992). | MR | Zbl
Cité par Sources :