Remarks on the behaviour of higher-order derivations on the gluing of differential spaces
Czechoslovak Mathematical Journal, Tome 65 (2015) no. 4, pp. 1137-1154
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

This paper is about some geometric properties of the gluing of order $k$ in the category of Sikorski differential spaces, where $k$ is assumed to be an arbitrary natural number. Differential spaces are one of possible generalizations of the concept of an infinitely differentiable manifold. It is known that in many (very important) mathematical models, the manifold structure breaks down. Therefore it is important to introduce a more general concept. In this paper, in particular, the behaviour of $k^{\rm th}$ order tangent spaces, their dimensions, and other geometric properties, are described in the context of the process of gluing differential spaces. At the end some examples are given. The paper is self-consistent, i.e., a short review of the differential spaces theory is presented at the beginning.
This paper is about some geometric properties of the gluing of order $k$ in the category of Sikorski differential spaces, where $k$ is assumed to be an arbitrary natural number. Differential spaces are one of possible generalizations of the concept of an infinitely differentiable manifold. It is known that in many (very important) mathematical models, the manifold structure breaks down. Therefore it is important to introduce a more general concept. In this paper, in particular, the behaviour of $k^{\rm th}$ order tangent spaces, their dimensions, and other geometric properties, are described in the context of the process of gluing differential spaces. At the end some examples are given. The paper is self-consistent, i.e., a short review of the differential spaces theory is presented at the beginning.
DOI : 10.1007/s10587-015-0232-z
Classification : 58A40
Keywords: gluing of differential space; higher-order differential geometry; Sikorski differential space
@article{10_1007_s10587_015_0232_z,
     author = {Drachal, Krzysztof},
     title = {Remarks on the behaviour of higher-order derivations on the gluing of differential spaces},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1137--1154},
     year = {2015},
     volume = {65},
     number = {4},
     doi = {10.1007/s10587-015-0232-z},
     mrnumber = {3441340},
     zbl = {06537715},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0232-z/}
}
TY  - JOUR
AU  - Drachal, Krzysztof
TI  - Remarks on the behaviour of higher-order derivations on the gluing of differential spaces
JO  - Czechoslovak Mathematical Journal
PY  - 2015
SP  - 1137
EP  - 1154
VL  - 65
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0232-z/
DO  - 10.1007/s10587-015-0232-z
LA  - en
ID  - 10_1007_s10587_015_0232_z
ER  - 
%0 Journal Article
%A Drachal, Krzysztof
%T Remarks on the behaviour of higher-order derivations on the gluing of differential spaces
%J Czechoslovak Mathematical Journal
%D 2015
%P 1137-1154
%V 65
%N 4
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0232-z/
%R 10.1007/s10587-015-0232-z
%G en
%F 10_1007_s10587_015_0232_z
Drachal, Krzysztof. Remarks on the behaviour of higher-order derivations on the gluing of differential spaces. Czechoslovak Mathematical Journal, Tome 65 (2015) no. 4, pp. 1137-1154. doi: 10.1007/s10587-015-0232-z

[1] Batubenge, A., Iglesias-Zemmour, P., Karshon, Y., Watts, J.: Diffeological, Frölicher, and differential spaces. Preprint (2013). http://www.math.illinois.edu/ {jawatts/papers/reflexive.pdf}.

[2] Bröcker, T., Jänich, K.: Introduction to Differential Topology. Cambridge University Press, Cambridge (1982). | MR | Zbl

[3] Bucataru, I.: Linear connections for systems of higher order differential equations. Houston J. Math. 31 (2005), 315-332. | MR | Zbl

[4] Chen, K. T.: Iterated path integrals. Bull. Am. Math. Soc. 83 (1977), 831-879. | DOI | MR | Zbl

[5] Dodson, C. T. J., Galanis, G. N.: Second order tangent bundles of infinite dimensional manifolds. J. Geom. Phys. 52 (2004), 127-136. | DOI | MR | Zbl

[6] Drachal, K.: Introduction to $d$-spaces theory. Math. Aeterna 3 (2013), 753-770. | MR | Zbl

[7] Ebrahim, E., Mhehdi, N.: The tangent bundle of higher order. Proc. of 2nd World Congress of Nonlinear Analysts, Nonlinear Anal., Theory Methods Appl. 30 (1997), 5003-5007. | MR | Zbl

[8] Epstein, M., Śniatycki, J.: The Koch curve as a smooth manifold. Chaos Solitons Fractals 38 (2008), 334-338. | DOI | MR | Zbl

[9] G\_infinity ({\tt http://mathoverflow.net/users/22606/g-infinity}), : Extending derivations to the superposition closure (version: 2014-10-23). http://mathoverflow.net/q/182778</b>

[10] Gillman, L., Jerison, M.: Rings of Continuous Functions. Graduate Texts in Mathematics 43 Springer, Berlin (1976). | MR | Zbl

[11] Gruszczak, J., Heller, M., Sasin, W.: Quasiregular singularity of a cosmic string. Acta Cosmologica 18 (1992), 45-55.

[12] Heller, M., Multarzynski, P., Sasin, W., Zekanowski, Z.: Local differential dimension of space-time. Acta Cosmologica 17 (1991), 19-26.

[13] Heller, M., Sasin, W.: Origin of classical singularities. Gen. Relativ. Gravitation 31 (1999), 555-570. | DOI | MR | Zbl

[14] Kolář, I., Michor, P. W., Slovák, J.: Natural Operations in Differential Geometry. Springer, Berlin (1993). | MR

[15] Kriegl, A., Michor, P. W.: The convenient setting of global analysis. Mathematical Surveys and Monographs 53 American Mathematical Society, Providence (1997). | DOI | MR | Zbl

[16] Krupka, D., Krupka, M.: Jets and contact elements. Proceedings of the Seminar on Differential Geometry, Opava, Czech Republic, 2000 Mathematical Publications 2 Silesian University at Opava, Opava (2000), 39-85 D. Krupka. | MR | Zbl

[17] Kuratowski, C.: Topologie. I. Panstwowe Wydawnictwo Naukowe 13, Warszawa French (1958). | MR

[18] Mallios, A., Rosinger, E. E.: Space-time foam dense singularities and de Rham cohomology. Acta Appl. Math. 67 (2001), 59-89. | DOI | MR | Zbl

[19] Mallios, A., Rosinger, E. E.: Abstract differential geometry, differential algebras of generalized functions, and de Rham cohomology. Acta Appl. Math. 55 (1999), 231-250. | DOI | MR

[20] Mallios, A., Zafiris, E.: The homological Kähler-de Rham differential mechanism I: Application in general theory of relativity. Adv. Math. Phys. 2011 (2011), Article ID 191083, 14 pages. | MR | Zbl

[21] Miron, R.: The Geometry of Higher-Order Lagrange Spaces. Applications to Mechanics and Physics. Fundamental Theories of Physics 82 Kluwer Academic Publishers, Dordrecht (1997). | MR | Zbl

[22] Moreno, G.: On the canonical connection for smooth envelopes. Demonstr. Math. (electronic only) 47 (2014), 459-464. | MR | Zbl

[23] Morimoto, A.: Liftings of tensor fields and connections to tangent bundles of higher order. Nagoya Math. J. 40 (1970), 99-120. | DOI | MR | Zbl

[24] Mostow, M. A.: The differentiable space structures of Milnor classifying spaces, simplicial complexes, and geometric realizations. J. Differ. Geom. 14 (1979), 255-293. | DOI | MR | Zbl

[25] Multarzyński, P., Sasin, W., Żekanowski, Z.: Vectors and vector fields of {$k$}-th order on differential spaces. Demonstr. Math. (electronic only) 24 (1991), 557-572. | MR | Zbl

[26] Nestruev, J.: Smooth Manifolds and Observables. Graduate Texts in Mathematics 220 Springer, New York (2003). | MR | Zbl

[27] Newns, W. F., Walker, A. G.: Tangent planes to a differentiable manifold. J. Lond. Math. Soc. 31 (1956), 400-407. | DOI | MR | Zbl

[28] Pohl, W. F.: Differential geometry of higher order. Topology 1 (1962), 169-211. | DOI | MR | Zbl

[29] Sardanashvily, G.: Lectures on Differential Geometry of Modules and Rings. Application to Quantum Theory. Lambert Academic Publishing, Saarbrucken (2012).

[30] Sasin, W.: Gluing of differential spaces. Demonstr. Math. (electronic only) 25 (1992), 361-384. | MR | Zbl

[31] Sasin, W.: Geometrical properties of gluing of differential spaces. Demonstr. Math. (electronic only) 24 (1991), 635-656. | MR | Zbl

[32] Sasin, W.: On equivalence relations on a differential space. Commentat. Math. Univ. Carol. 29 (1988), 529-539. | MR | Zbl

[33] Sasin, W., Spallek, K.: Gluing of differentiable spaces and applications. Math. Ann. 292 (1992), 85-102. | DOI | MR | Zbl

[34] Sikorski, R.: An Introduction to Differential Geometry. Biblioteka matematyczna 42 Panstwowe Wydawnictwo Naukowe, Warszawa Polish (1972). | MR | Zbl

[35] Sikorski, R.: Differential modules. Colloq. Math. 24 (1971), 45-79. | DOI | MR | Zbl

[36] Sikorski, R.: Abstract covariant derivative. Colloq. Math. 18 (1967), 251-272. | DOI | MR | Zbl

[37] Śniatycki, J.: Reduction of symmetries of Dirac structures. J. Fixed Point Theory Appl. 10 (2011), 339-358. | DOI | MR | Zbl

[38] Śniatycki, J.: Geometric quantization, reduction and decomposition of group representations. J. Fixed Point Theory Appl. 3 (2008), 307-315. | DOI | MR | Zbl

[39] Śniatycki, J.: Orbits of families of vector fields on subcartesian spaces. Ann. Inst. Fourier 53 (2003), 2257-2296. | DOI | MR | Zbl

[40] Souriau, J.-M.: Groupes différentiels. Differential Geometrical Methods in Mathematical Physics. Proc. Conf. Aix-en-Provence and Salamanca, 1979 Lecture Notes in Math. 836 Springer, Berlin French (1980), 91-128. | MR | Zbl

[41] Spallek, K.: Differenzierbare Räume. Math. Ann. 180 German (1969), 269-296. | MR | Zbl

[42] Vassiliou, E.: Topological algebras and abstract differential geometry. J. Math. Sci., New York 95 (1999), 2669-2680. | DOI | MR | Zbl

[43] Warner, F. W.: Foundations of Differentiable Manifolds and Lie Groups. Graduate Texts in Mathematics 94 Springer, New York (1983). | DOI | MR | Zbl

Cité par Sources :