Keywords: gluing of differential space; higher-order differential geometry; Sikorski differential space
@article{10_1007_s10587_015_0232_z,
author = {Drachal, Krzysztof},
title = {Remarks on the behaviour of higher-order derivations on the gluing of differential spaces},
journal = {Czechoslovak Mathematical Journal},
pages = {1137--1154},
year = {2015},
volume = {65},
number = {4},
doi = {10.1007/s10587-015-0232-z},
mrnumber = {3441340},
zbl = {06537715},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0232-z/}
}
TY - JOUR AU - Drachal, Krzysztof TI - Remarks on the behaviour of higher-order derivations on the gluing of differential spaces JO - Czechoslovak Mathematical Journal PY - 2015 SP - 1137 EP - 1154 VL - 65 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0232-z/ DO - 10.1007/s10587-015-0232-z LA - en ID - 10_1007_s10587_015_0232_z ER -
%0 Journal Article %A Drachal, Krzysztof %T Remarks on the behaviour of higher-order derivations on the gluing of differential spaces %J Czechoslovak Mathematical Journal %D 2015 %P 1137-1154 %V 65 %N 4 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0232-z/ %R 10.1007/s10587-015-0232-z %G en %F 10_1007_s10587_015_0232_z
Drachal, Krzysztof. Remarks on the behaviour of higher-order derivations on the gluing of differential spaces. Czechoslovak Mathematical Journal, Tome 65 (2015) no. 4, pp. 1137-1154. doi: 10.1007/s10587-015-0232-z
[1] Batubenge, A., Iglesias-Zemmour, P., Karshon, Y., Watts, J.: Diffeological, Frölicher, and differential spaces. Preprint (2013). http://www.math.illinois.edu/ {jawatts/papers/reflexive.pdf}.
[2] Bröcker, T., Jänich, K.: Introduction to Differential Topology. Cambridge University Press, Cambridge (1982). | MR | Zbl
[3] Bucataru, I.: Linear connections for systems of higher order differential equations. Houston J. Math. 31 (2005), 315-332. | MR | Zbl
[4] Chen, K. T.: Iterated path integrals. Bull. Am. Math. Soc. 83 (1977), 831-879. | DOI | MR | Zbl
[5] Dodson, C. T. J., Galanis, G. N.: Second order tangent bundles of infinite dimensional manifolds. J. Geom. Phys. 52 (2004), 127-136. | DOI | MR | Zbl
[6] Drachal, K.: Introduction to $d$-spaces theory. Math. Aeterna 3 (2013), 753-770. | MR | Zbl
[7] Ebrahim, E., Mhehdi, N.: The tangent bundle of higher order. Proc. of 2nd World Congress of Nonlinear Analysts, Nonlinear Anal., Theory Methods Appl. 30 (1997), 5003-5007. | MR | Zbl
[8] Epstein, M., Śniatycki, J.: The Koch curve as a smooth manifold. Chaos Solitons Fractals 38 (2008), 334-338. | DOI | MR | Zbl
[9] G\_infinity ({\tt http://mathoverflow.net/users/22606/g-infinity}), : Extending derivations to the superposition closure (version: 2014-10-23). http://mathoverflow.net/q/182778</b>
[10] Gillman, L., Jerison, M.: Rings of Continuous Functions. Graduate Texts in Mathematics 43 Springer, Berlin (1976). | MR | Zbl
[11] Gruszczak, J., Heller, M., Sasin, W.: Quasiregular singularity of a cosmic string. Acta Cosmologica 18 (1992), 45-55.
[12] Heller, M., Multarzynski, P., Sasin, W., Zekanowski, Z.: Local differential dimension of space-time. Acta Cosmologica 17 (1991), 19-26.
[13] Heller, M., Sasin, W.: Origin of classical singularities. Gen. Relativ. Gravitation 31 (1999), 555-570. | DOI | MR | Zbl
[14] Kolář, I., Michor, P. W., Slovák, J.: Natural Operations in Differential Geometry. Springer, Berlin (1993). | MR
[15] Kriegl, A., Michor, P. W.: The convenient setting of global analysis. Mathematical Surveys and Monographs 53 American Mathematical Society, Providence (1997). | DOI | MR | Zbl
[16] Krupka, D., Krupka, M.: Jets and contact elements. Proceedings of the Seminar on Differential Geometry, Opava, Czech Republic, 2000 Mathematical Publications 2 Silesian University at Opava, Opava (2000), 39-85 D. Krupka. | MR | Zbl
[17] Kuratowski, C.: Topologie. I. Panstwowe Wydawnictwo Naukowe 13, Warszawa French (1958). | MR
[18] Mallios, A., Rosinger, E. E.: Space-time foam dense singularities and de Rham cohomology. Acta Appl. Math. 67 (2001), 59-89. | DOI | MR | Zbl
[19] Mallios, A., Rosinger, E. E.: Abstract differential geometry, differential algebras of generalized functions, and de Rham cohomology. Acta Appl. Math. 55 (1999), 231-250. | DOI | MR
[20] Mallios, A., Zafiris, E.: The homological Kähler-de Rham differential mechanism I: Application in general theory of relativity. Adv. Math. Phys. 2011 (2011), Article ID 191083, 14 pages. | MR | Zbl
[21] Miron, R.: The Geometry of Higher-Order Lagrange Spaces. Applications to Mechanics and Physics. Fundamental Theories of Physics 82 Kluwer Academic Publishers, Dordrecht (1997). | MR | Zbl
[22] Moreno, G.: On the canonical connection for smooth envelopes. Demonstr. Math. (electronic only) 47 (2014), 459-464. | MR | Zbl
[23] Morimoto, A.: Liftings of tensor fields and connections to tangent bundles of higher order. Nagoya Math. J. 40 (1970), 99-120. | DOI | MR | Zbl
[24] Mostow, M. A.: The differentiable space structures of Milnor classifying spaces, simplicial complexes, and geometric realizations. J. Differ. Geom. 14 (1979), 255-293. | DOI | MR | Zbl
[25] Multarzyński, P., Sasin, W., Żekanowski, Z.: Vectors and vector fields of {$k$}-th order on differential spaces. Demonstr. Math. (electronic only) 24 (1991), 557-572. | MR | Zbl
[26] Nestruev, J.: Smooth Manifolds and Observables. Graduate Texts in Mathematics 220 Springer, New York (2003). | MR | Zbl
[27] Newns, W. F., Walker, A. G.: Tangent planes to a differentiable manifold. J. Lond. Math. Soc. 31 (1956), 400-407. | DOI | MR | Zbl
[28] Pohl, W. F.: Differential geometry of higher order. Topology 1 (1962), 169-211. | DOI | MR | Zbl
[29] Sardanashvily, G.: Lectures on Differential Geometry of Modules and Rings. Application to Quantum Theory. Lambert Academic Publishing, Saarbrucken (2012).
[30] Sasin, W.: Gluing of differential spaces. Demonstr. Math. (electronic only) 25 (1992), 361-384. | MR | Zbl
[31] Sasin, W.: Geometrical properties of gluing of differential spaces. Demonstr. Math. (electronic only) 24 (1991), 635-656. | MR | Zbl
[32] Sasin, W.: On equivalence relations on a differential space. Commentat. Math. Univ. Carol. 29 (1988), 529-539. | MR | Zbl
[33] Sasin, W., Spallek, K.: Gluing of differentiable spaces and applications. Math. Ann. 292 (1992), 85-102. | DOI | MR | Zbl
[34] Sikorski, R.: An Introduction to Differential Geometry. Biblioteka matematyczna 42 Panstwowe Wydawnictwo Naukowe, Warszawa Polish (1972). | MR | Zbl
[35] Sikorski, R.: Differential modules. Colloq. Math. 24 (1971), 45-79. | DOI | MR | Zbl
[36] Sikorski, R.: Abstract covariant derivative. Colloq. Math. 18 (1967), 251-272. | DOI | MR | Zbl
[37] Śniatycki, J.: Reduction of symmetries of Dirac structures. J. Fixed Point Theory Appl. 10 (2011), 339-358. | DOI | MR | Zbl
[38] Śniatycki, J.: Geometric quantization, reduction and decomposition of group representations. J. Fixed Point Theory Appl. 3 (2008), 307-315. | DOI | MR | Zbl
[39] Śniatycki, J.: Orbits of families of vector fields on subcartesian spaces. Ann. Inst. Fourier 53 (2003), 2257-2296. | DOI | MR | Zbl
[40] Souriau, J.-M.: Groupes différentiels. Differential Geometrical Methods in Mathematical Physics. Proc. Conf. Aix-en-Provence and Salamanca, 1979 Lecture Notes in Math. 836 Springer, Berlin French (1980), 91-128. | MR | Zbl
[41] Spallek, K.: Differenzierbare Räume. Math. Ann. 180 German (1969), 269-296. | MR | Zbl
[42] Vassiliou, E.: Topological algebras and abstract differential geometry. J. Math. Sci., New York 95 (1999), 2669-2680. | DOI | MR | Zbl
[43] Warner, F. W.: Foundations of Differentiable Manifolds and Lie Groups. Graduate Texts in Mathematics 94 Springer, New York (1983). | DOI | MR | Zbl
Cité par Sources :