Keywords: boundedness; chemotaxis; nonlinear logistic source
@article{10_1007_s10587_015_0231_0,
author = {Liu, Ji and Zheng, Jia-Shan},
title = {Boundedness in a quasilinear parabolic-parabolic chemotaxis system with nonlinear logistic source},
journal = {Czechoslovak Mathematical Journal},
pages = {1117--1136},
year = {2015},
volume = {65},
number = {4},
doi = {10.1007/s10587-015-0231-0},
mrnumber = {3441339},
zbl = {06537714},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0231-0/}
}
TY - JOUR AU - Liu, Ji AU - Zheng, Jia-Shan TI - Boundedness in a quasilinear parabolic-parabolic chemotaxis system with nonlinear logistic source JO - Czechoslovak Mathematical Journal PY - 2015 SP - 1117 EP - 1136 VL - 65 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0231-0/ DO - 10.1007/s10587-015-0231-0 LA - en ID - 10_1007_s10587_015_0231_0 ER -
%0 Journal Article %A Liu, Ji %A Zheng, Jia-Shan %T Boundedness in a quasilinear parabolic-parabolic chemotaxis system with nonlinear logistic source %J Czechoslovak Mathematical Journal %D 2015 %P 1117-1136 %V 65 %N 4 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0231-0/ %R 10.1007/s10587-015-0231-0 %G en %F 10_1007_s10587_015_0231_0
Liu, Ji; Zheng, Jia-Shan. Boundedness in a quasilinear parabolic-parabolic chemotaxis system with nonlinear logistic source. Czechoslovak Mathematical Journal, Tome 65 (2015) no. 4, pp. 1117-1136. doi: 10.1007/s10587-015-0231-0
[1] Cao, X.: Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with logistic source. J. Math. Anal. Appl. 412 (2014), 181-188. | DOI | MR
[2] Cieślak, T., Stinner, C.: Finite-time blowup in a supercritical quasilinear parabolic-parabolic Keller-Segel system in dimension 2. Acta Appl. Math. 129 (2014), 135-146. | DOI | MR | Zbl
[3] Cieślak, T., Stinner, C.: Finite-time blowup and global-in-time unbounded solutions to a parabolic-parabolic quasilinear Keller-Segel system in higher dimensions. J. Differ. Equations 252 (2012), 5832-5851. | DOI | MR | Zbl
[4] Herrero, M. A., Velázquez, J. J. L.: A blow-up mechanism for a chemotaxis model. Ann. Sc. Norm. Super. Pisa Cl. Sci. 4. 24 (1997), 633-683. | MR | Zbl
[5] Horstmann, D., Wang, G.: Blow-up in a chemotaxis model without symmetry assumptions. Eur. J. Appl. Math. 12 (2001), 159-177. | DOI | MR | Zbl
[6] Horstmann, D., Winkler, M.: Boundedness vs. blow-up in a chemotaxis system. J. Differ. Equations 215 (2005), 52-107. | DOI | MR | Zbl
[7] Keller, E. F., Segel, L. A.: Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol. 26 (1970), 399-415. | DOI | Zbl
[8] Nagai, T., Senba, T., Yoshida, K.: Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis. Funkc. Ekvacioj. Ser. Int. 40 (1997), 411-433. | MR | Zbl
[9] Osaki, K., Yagi, A.: Finite dimensional attractor for one-dimensional Keller-Segel equations. Funkc. Ekvacioj. Ser. Int. 44 (2001), 441-469. | MR | Zbl
[10] Painter, K. J., Hillen, T.: Volume-filling and quorum-sensing in models for chemosensitive movement. Can. Appl. Math. Q. 10 (2002), 501-543. | MR | Zbl
[11] Tao, Y., Winkler, M.: Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity. J. Differ. Equations 252 (2012), 692-715. | DOI | MR
[12] Winkler, M.: Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system. J. Math. Pures Appl. 100 (2013), 748-767. | DOI | MR | Zbl
[13] Winkler, M.: Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model. J. Differ. Equations 248 (2010), 2889-2905. | DOI | MR | Zbl
[14] Winkler, M.: Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source. Commun. Partial Differ. Equations 35 (2010), 1516-1537. | DOI | MR | Zbl
Cité par Sources :