Boundedness in a quasilinear parabolic-parabolic chemotaxis system with nonlinear logistic source
Czechoslovak Mathematical Journal, Tome 65 (2015) no. 4, pp. 1117-1136
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We study a quasilinear parabolic-parabolic chemotaxis system with nonlinear logistic source, under homogeneous Neumann boundary conditions in a smooth bounded domain. By establishing proper a priori estimates we prove that, with both the diffusion function and the chemotaxis sensitivity function being positive, the corresponding initial boundary value problem admits a unique global classical solution which is uniformly bounded. The result of this paper is a generalization of that of Cao (2014).
We study a quasilinear parabolic-parabolic chemotaxis system with nonlinear logistic source, under homogeneous Neumann boundary conditions in a smooth bounded domain. By establishing proper a priori estimates we prove that, with both the diffusion function and the chemotaxis sensitivity function being positive, the corresponding initial boundary value problem admits a unique global classical solution which is uniformly bounded. The result of this paper is a generalization of that of Cao (2014).
DOI : 10.1007/s10587-015-0231-0
Classification : 35K59, 92C17
Keywords: boundedness; chemotaxis; nonlinear logistic source
@article{10_1007_s10587_015_0231_0,
     author = {Liu, Ji and Zheng, Jia-Shan},
     title = {Boundedness in a quasilinear parabolic-parabolic chemotaxis system with nonlinear logistic source},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1117--1136},
     year = {2015},
     volume = {65},
     number = {4},
     doi = {10.1007/s10587-015-0231-0},
     mrnumber = {3441339},
     zbl = {06537714},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0231-0/}
}
TY  - JOUR
AU  - Liu, Ji
AU  - Zheng, Jia-Shan
TI  - Boundedness in a quasilinear parabolic-parabolic chemotaxis system with nonlinear logistic source
JO  - Czechoslovak Mathematical Journal
PY  - 2015
SP  - 1117
EP  - 1136
VL  - 65
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0231-0/
DO  - 10.1007/s10587-015-0231-0
LA  - en
ID  - 10_1007_s10587_015_0231_0
ER  - 
%0 Journal Article
%A Liu, Ji
%A Zheng, Jia-Shan
%T Boundedness in a quasilinear parabolic-parabolic chemotaxis system with nonlinear logistic source
%J Czechoslovak Mathematical Journal
%D 2015
%P 1117-1136
%V 65
%N 4
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0231-0/
%R 10.1007/s10587-015-0231-0
%G en
%F 10_1007_s10587_015_0231_0
Liu, Ji; Zheng, Jia-Shan. Boundedness in a quasilinear parabolic-parabolic chemotaxis system with nonlinear logistic source. Czechoslovak Mathematical Journal, Tome 65 (2015) no. 4, pp. 1117-1136. doi: 10.1007/s10587-015-0231-0

[1] Cao, X.: Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with logistic source. J. Math. Anal. Appl. 412 (2014), 181-188. | DOI | MR

[2] Cieślak, T., Stinner, C.: Finite-time blowup in a supercritical quasilinear parabolic-parabolic Keller-Segel system in dimension 2. Acta Appl. Math. 129 (2014), 135-146. | DOI | MR | Zbl

[3] Cieślak, T., Stinner, C.: Finite-time blowup and global-in-time unbounded solutions to a parabolic-parabolic quasilinear Keller-Segel system in higher dimensions. J. Differ. Equations 252 (2012), 5832-5851. | DOI | MR | Zbl

[4] Herrero, M. A., Velázquez, J. J. L.: A blow-up mechanism for a chemotaxis model. Ann. Sc. Norm. Super. Pisa Cl. Sci. 4. 24 (1997), 633-683. | MR | Zbl

[5] Horstmann, D., Wang, G.: Blow-up in a chemotaxis model without symmetry assumptions. Eur. J. Appl. Math. 12 (2001), 159-177. | DOI | MR | Zbl

[6] Horstmann, D., Winkler, M.: Boundedness vs. blow-up in a chemotaxis system. J. Differ. Equations 215 (2005), 52-107. | DOI | MR | Zbl

[7] Keller, E. F., Segel, L. A.: Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol. 26 (1970), 399-415. | DOI | Zbl

[8] Nagai, T., Senba, T., Yoshida, K.: Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis. Funkc. Ekvacioj. Ser. Int. 40 (1997), 411-433. | MR | Zbl

[9] Osaki, K., Yagi, A.: Finite dimensional attractor for one-dimensional Keller-Segel equations. Funkc. Ekvacioj. Ser. Int. 44 (2001), 441-469. | MR | Zbl

[10] Painter, K. J., Hillen, T.: Volume-filling and quorum-sensing in models for chemosensitive movement. Can. Appl. Math. Q. 10 (2002), 501-543. | MR | Zbl

[11] Tao, Y., Winkler, M.: Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity. J. Differ. Equations 252 (2012), 692-715. | DOI | MR

[12] Winkler, M.: Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system. J. Math. Pures Appl. 100 (2013), 748-767. | DOI | MR | Zbl

[13] Winkler, M.: Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model. J. Differ. Equations 248 (2010), 2889-2905. | DOI | MR | Zbl

[14] Winkler, M.: Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source. Commun. Partial Differ. Equations 35 (2010), 1516-1537. | DOI | MR | Zbl

Cité par Sources :