Keywords: Einstein manifold; $2$-stein manifold; Singer-Thorpe basis
@article{10_1007_s10587_015_0230_1,
author = {Du\v{s}ek, Zden\v{e}k},
title = {Singer-Thorpe bases for special {Einstein} curvature tensors in dimension 4},
journal = {Czechoslovak Mathematical Journal},
pages = {1101--1115},
year = {2015},
volume = {65},
number = {4},
doi = {10.1007/s10587-015-0230-1},
mrnumber = {3441338},
zbl = {06537713},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0230-1/}
}
TY - JOUR AU - Dušek, Zdeněk TI - Singer-Thorpe bases for special Einstein curvature tensors in dimension 4 JO - Czechoslovak Mathematical Journal PY - 2015 SP - 1101 EP - 1115 VL - 65 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0230-1/ DO - 10.1007/s10587-015-0230-1 LA - en ID - 10_1007_s10587_015_0230_1 ER -
%0 Journal Article %A Dušek, Zdeněk %T Singer-Thorpe bases for special Einstein curvature tensors in dimension 4 %J Czechoslovak Mathematical Journal %D 2015 %P 1101-1115 %V 65 %N 4 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0230-1/ %R 10.1007/s10587-015-0230-1 %G en %F 10_1007_s10587_015_0230_1
Dušek, Zdeněk. Singer-Thorpe bases for special Einstein curvature tensors in dimension 4. Czechoslovak Mathematical Journal, Tome 65 (2015) no. 4, pp. 1101-1115. doi: 10.1007/s10587-015-0230-1
[1] Carpenter, P., Gray, A., Willmore, T. J.: The curvature of Einstein symmetric spaces. Q. J. Math., Oxf. II. Ser. 33 (1982), 45-64. | DOI | MR | Zbl
[2] Dušek, Z., Kowalski, O.: Transformations between Singer-Thorpe bases in 4-dimensional Einstein manifolds. Hokkaido Math. J. 44 (2015), 441-458. | DOI | MR
[3] Euh, Y., Park, J. H., Sekigawa, K.: A generalization of a 4-dimensional Einstein manifold. Math. Slovaca 63 (2013), 595-610. | MR
[4] Euh, Y., Park, J., Sekigawa, K.: Critical metrics for quadratic functionals in the curvature on 4-dimensional manifolds. Differ. Geom. Appl. 29 (2011), 642-646. | DOI | MR | Zbl
[5] Gilkey, P. B.: The Geometry of Curvature Homogeneous Pseudo-Riemannian Manifolds. ICP Advanced Texts in Mathematics 2 Imperial College, London (2007). | MR | Zbl
[6] Kowalski, O., Vanhecke, L.: Ball-homogeneous and disk-homogeneous Riemannian manifolds. Math. Z. 180 (1982), 429-444. | DOI | MR | Zbl
[7] Sekigawa, K., Vanhecke, L.: Volume-preserving geodesic symmetries on four-dimensional 2-stein spaces. Kodai Math. J. 9 (1986), 215-224. | DOI | MR | Zbl
[8] Sekigawa, K., Vanhecke, L.: Volume-preserving geodesic symmetries on four-dimensional Kähler manifolds. Differential Geometry, Proc. Second Int. Symp., Peñí scola, Spain, 1985 Lecture Notes in Math. 1209 Springer, Berlin (1986), 275-291 A. M. Naveira et al. | DOI | MR | Zbl
[9] Singer, I. M., Thorpe, J. A.: The curvature of 4-dimensional Einstein spaces. Global Analysis, Papers in Honor of K. Kodaira Univ. Tokyo Press, Tokyo (1969), 355-365. | MR | Zbl
Cité par Sources :