Singer-Thorpe bases for special Einstein curvature tensors in dimension 4
Czechoslovak Mathematical Journal, Tome 65 (2015) no. 4, pp. 1101-1115.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $(M,g)$ be a 4-dimensional Einstein Riemannian manifold. At each point $p$ of $M$, the tangent space admits a so-called Singer-Thorpe basis (ST basis) with respect to the curvature tensor $R$ at $p$. In this basis, up to standard symmetries and antisymmetries, just $5$ components of the curvature tensor $R$ are nonzero. For the space of constant curvature, the group ${\rm O}(4)$ acts as a transformation group between ST bases at $T_pM$ and for the so-called 2-stein curvature tensors, the group ${\rm Sp}(1)\subset {\rm SO}(4)$ acts as a transformation group between ST bases. In the present work, the complete list of Lie subgroups of ${\rm SO}(4)$ which act as transformation groups between ST bases for certain classes of Einstein curvature tensors is presented. Special representations of groups ${\rm SO}(2)$, $T^2$, ${\rm Sp}(1)$ or ${\rm U}(2)$ are obtained and the classes of curvature tensors whose transformation group into new ST bases is one of the mentioned groups are determined.
DOI : 10.1007/s10587-015-0230-1
Classification : 53C25
Keywords: Einstein manifold; $2$-stein manifold; Singer-Thorpe basis
@article{10_1007_s10587_015_0230_1,
     author = {Du\v{s}ek, Zden\v{e}k},
     title = {Singer-Thorpe bases for special {Einstein} curvature tensors in dimension 4},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1101--1115},
     publisher = {mathdoc},
     volume = {65},
     number = {4},
     year = {2015},
     doi = {10.1007/s10587-015-0230-1},
     mrnumber = {3441338},
     zbl = {06537713},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0230-1/}
}
TY  - JOUR
AU  - Dušek, Zdeněk
TI  - Singer-Thorpe bases for special Einstein curvature tensors in dimension 4
JO  - Czechoslovak Mathematical Journal
PY  - 2015
SP  - 1101
EP  - 1115
VL  - 65
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0230-1/
DO  - 10.1007/s10587-015-0230-1
LA  - en
ID  - 10_1007_s10587_015_0230_1
ER  - 
%0 Journal Article
%A Dušek, Zdeněk
%T Singer-Thorpe bases for special Einstein curvature tensors in dimension 4
%J Czechoslovak Mathematical Journal
%D 2015
%P 1101-1115
%V 65
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0230-1/
%R 10.1007/s10587-015-0230-1
%G en
%F 10_1007_s10587_015_0230_1
Dušek, Zdeněk. Singer-Thorpe bases for special Einstein curvature tensors in dimension 4. Czechoslovak Mathematical Journal, Tome 65 (2015) no. 4, pp. 1101-1115. doi : 10.1007/s10587-015-0230-1. http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0230-1/

Cité par Sources :