$AF$-algebras and topology of mapping tori
Czechoslovak Mathematical Journal, Tome 65 (2015) no. 4, pp. 1069-1083
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The paper studies applications of $C^*$-algebras in geometric topology. Namely, a covariant functor from the category of mapping tori to a category of $AF$-algebras is constructed; the functor takes continuous maps between such manifolds to stable homomorphisms between the corresponding $AF$-algebras. We use this functor to develop an obstruction theory for the torus bundles of dimension $2$, $3$ and $4$. In conclusion, we consider two numerical examples illustrating our main results.
The paper studies applications of $C^*$-algebras in geometric topology. Namely, a covariant functor from the category of mapping tori to a category of $AF$-algebras is constructed; the functor takes continuous maps between such manifolds to stable homomorphisms between the corresponding $AF$-algebras. We use this functor to develop an obstruction theory for the torus bundles of dimension $2$, $3$ and $4$. In conclusion, we consider two numerical examples illustrating our main results.
DOI : 10.1007/s10587-015-0228-8
Classification : 46L85, 55S35
Keywords: Anosov diffeomorphism; $AF$-algebra
@article{10_1007_s10587_015_0228_8,
     author = {Nikolaev, Igor},
     title = {$AF$-algebras and topology of mapping tori},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1069--1083},
     year = {2015},
     volume = {65},
     number = {4},
     doi = {10.1007/s10587-015-0228-8},
     mrnumber = {3441336},
     zbl = {06537711},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0228-8/}
}
TY  - JOUR
AU  - Nikolaev, Igor
TI  - $AF$-algebras and topology of mapping tori
JO  - Czechoslovak Mathematical Journal
PY  - 2015
SP  - 1069
EP  - 1083
VL  - 65
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0228-8/
DO  - 10.1007/s10587-015-0228-8
LA  - en
ID  - 10_1007_s10587_015_0228_8
ER  - 
%0 Journal Article
%A Nikolaev, Igor
%T $AF$-algebras and topology of mapping tori
%J Czechoslovak Mathematical Journal
%D 2015
%P 1069-1083
%V 65
%N 4
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0228-8/
%R 10.1007/s10587-015-0228-8
%G en
%F 10_1007_s10587_015_0228_8
Nikolaev, Igor. $AF$-algebras and topology of mapping tori. Czechoslovak Mathematical Journal, Tome 65 (2015) no. 4, pp. 1069-1083. doi: 10.1007/s10587-015-0228-8

[1] Anosov, D. V.: Geodesic flows on closed Riemannian manifolds of negative curvature. Trudy Mat. Inst. Steklov. 90 Russian (1967), 209. | MR

[2] Bauer, M.: A characterization of uniquely ergodic interval exchange maps in terms of the Jacobi-Perron algorithm. Bol. Soc. Bras. Mat., Nova Sér. 27 (1996), 109-128. | DOI | MR | Zbl

[3] Bernstein, L.: The Jacobi-Perron Algorithm. Its Theory and Application. Lecture Notes in Mathematics 207 Springer, Berlin (1971). | DOI | MR | Zbl

[4] Bratteli, O.: Inductive limits of finite dimensional {$C^{\ast} $}-algebras. Trans. Am. Math. Soc. 171 (1972), 195-234. | MR

[5] Effros, E. G.: Dimensions and $C^\ast $-Algebras. Regional Conference Series in Mathematics 46 Conference Board of the Mathematical Sciences, Washington, AMS, Providence (1981). | MR

[6] H. B. Lawson, Jr.: Foliations. Bull. Am. Math. Soc. 80 (1974), 369-418. | DOI | MR | Zbl

[7] Morandi, P.: Field and Galois Theory. Graduate Texts in Mathematics 167 Springer, New York (1996). | DOI | MR | Zbl

[8] Plante, J. F.: Foliations with measure preserving holonomy. Ann. Math. (2) 102 (1975), 327-361. | MR | Zbl

[9] Smale, S.: Differentiable dynamical systems. Bull. Am. Math. Soc. 73 (1967), 747-817. | DOI | MR | Zbl

[10] Thurston, W. P.: On the geometry and dynamics of diffeomorphisms of surfaces. Bull. Am. Math. Soc., New Ser. 19 (1988), 417-431. | DOI | MR | Zbl

Cité par Sources :