$AF$-algebras and topology of mapping tori
Czechoslovak Mathematical Journal, Tome 65 (2015) no. 4, pp. 1069-1083
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
The paper studies applications of $C^*$-algebras in geometric topology. Namely, a covariant functor from the category of mapping tori to a category of $AF$-algebras is constructed; the functor takes continuous maps between such manifolds to stable homomorphisms between the corresponding $AF$-algebras. We use this functor to develop an obstruction theory for the torus bundles of dimension $2$, $3$ and $4$. In conclusion, we consider two numerical examples illustrating our main results.
DOI :
10.1007/s10587-015-0228-8
Classification :
46L85, 55S35
Keywords: Anosov diffeomorphism; $AF$-algebra
Keywords: Anosov diffeomorphism; $AF$-algebra
@article{10_1007_s10587_015_0228_8,
author = {Nikolaev, Igor},
title = {$AF$-algebras and topology of mapping tori},
journal = {Czechoslovak Mathematical Journal},
pages = {1069--1083},
publisher = {mathdoc},
volume = {65},
number = {4},
year = {2015},
doi = {10.1007/s10587-015-0228-8},
mrnumber = {3441336},
zbl = {06537711},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0228-8/}
}
TY - JOUR AU - Nikolaev, Igor TI - $AF$-algebras and topology of mapping tori JO - Czechoslovak Mathematical Journal PY - 2015 SP - 1069 EP - 1083 VL - 65 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0228-8/ DO - 10.1007/s10587-015-0228-8 LA - en ID - 10_1007_s10587_015_0228_8 ER -
Nikolaev, Igor. $AF$-algebras and topology of mapping tori. Czechoslovak Mathematical Journal, Tome 65 (2015) no. 4, pp. 1069-1083. doi: 10.1007/s10587-015-0228-8
Cité par Sources :