Keywords: delay equations; uniform exponential stability; exponential estimates of solutions; Cauchy function
@article{10_1007_s10587_015_0227_9,
author = {Agarwal, Ravi P. and Domoshnitsky, Alexander and Maghakyan, Abraham},
title = {On exponential stability of second order delay differential equations},
journal = {Czechoslovak Mathematical Journal},
pages = {1047--1068},
year = {2015},
volume = {65},
number = {4},
doi = {10.1007/s10587-015-0227-9},
mrnumber = {3441335},
zbl = {06537710},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0227-9/}
}
TY - JOUR AU - Agarwal, Ravi P. AU - Domoshnitsky, Alexander AU - Maghakyan, Abraham TI - On exponential stability of second order delay differential equations JO - Czechoslovak Mathematical Journal PY - 2015 SP - 1047 EP - 1068 VL - 65 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0227-9/ DO - 10.1007/s10587-015-0227-9 LA - en ID - 10_1007_s10587_015_0227_9 ER -
%0 Journal Article %A Agarwal, Ravi P. %A Domoshnitsky, Alexander %A Maghakyan, Abraham %T On exponential stability of second order delay differential equations %J Czechoslovak Mathematical Journal %D 2015 %P 1047-1068 %V 65 %N 4 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0227-9/ %R 10.1007/s10587-015-0227-9 %G en %F 10_1007_s10587_015_0227_9
Agarwal, Ravi P.; Domoshnitsky, Alexander; Maghakyan, Abraham. On exponential stability of second order delay differential equations. Czechoslovak Mathematical Journal, Tome 65 (2015) no. 4, pp. 1047-1068. doi: 10.1007/s10587-015-0227-9
[1] Azbelev, N. V., Maksimov, V. P., Rakhmatullina, L. F.: Introduction to the Theory of \hbox{Functional}-Differential Equations. Nauka, Moskva Russian. English summary (1991). | Zbl
[2] Berezansky, L., Braverman, E., Domoshnitsky, A.: Stability of the second order delay differential equations with a damping term. Differ. Equ. Dyn. Syst. 16 (2008), 185-205. | DOI | MR | Zbl
[3] Burton, T. A.: Stability by Fixed Point Theory for Functional Differential Equations. Dover Publications, Mineola (2006). | MR | Zbl
[4] Burton, T. A.: Stability and Periodic Solutions of Ordinary and Functional-Differential Equations. Mathematics in Science and Engineering 178 Academic Press, Orlando (1985). | Zbl
[5] Burton, T. A., Furumochi, T.: Asymptotic behavior of solutions of functional differential equations by fixed point theorems. Dyn. Syst. Appl. 11 (2002), 499-519. | MR | Zbl
[6] Burton, T. A., Hatvani, L.: Asymptotic stability of second order ordinary, functional, and partial differential equations. J. Math. Anal. Appl. 176 (1993), 261-281. | DOI | Zbl
[7] Cahlon, B., Schmidt, D.: Stability criteria for certain second-order delay differential equations with mixed coefficients. J. Comput. Appl. Math. 170 (2004), 79-102. | DOI | MR | Zbl
[8] Cahlon, B., Schmidt, D.: Stability criteria for certain second order delay differential equations. Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 10 (2003), 593-621. | MR | Zbl
[9] Domoshnitsky, A.: Nonoscillation, maximum principles, and exponential stability of second order delay differential equations without damping term. J. Inequal. Appl. (2014), 2014:361, 26 pages. | MR
[10] Domoshnitsky, A.: Unboundedness of solutions and instability of differential equations of the second order with delayed argument. Differ. Integral Equ. 14 (2001), 559-576. | MR | Zbl
[11] Domoshnitsky, A.: Componentwise applicability of Chaplygin’s theorem to a system of linear differential equations with time-lag. Differ. Equations 26 (1990), 1254-1259; translation from Differ. Uravn. 26 (1990), 1699-1705 Russian. | MR
[12] Došlá, Z., Kiguradze, I.: On boundedness and stability of solutions of second order linear differential equations with advanced arguments. Adv. Math. Sci. Appl. 9 (1999), 1-24. | Zbl
[13] Erbe, L. H., Kong, Q., Zhang, B. G.: Oscillation Theory for Functional Differential Equations. Pure and Applied Mathematics 190 Marcel Dekker, New York (1995).
[14] Erneux, T.: Applied Delay Differential Equations. Surveys and Tutorials in the Applied Mathematical Sciences 3 Springer, New York (2009). | MR | Zbl
[15] Fomin, V. N., Fradkov, A. L., Yakubovich, V. A.: Adaptive Control of Dynamical Objects. Nauka, Moskva Russian (1981). | Zbl
[16] Izyumova, D. V.: On the boundedness and stability of the solutions of nonlinear second order functional-differential equations. Soobshch. Akad. Nauk Gruz. SSR 100 Russian (1980), 285-288. | Zbl
[17] Kolmanovskii, V., Myshkis, A.: Introduction to the Theory and Applications of Functional-Differential Equations. Mathematics and Its Applications 463 Kluwer Academic Publishers, Dordrecht (1999). | MR | Zbl
[18] Ladde, G. S., Lakshmikantham, V., Zhang, B. G.: Oscillation Theory of Differential Equations with Deviating Arguments. Pure and Applied Mathematics 110 Marcel Dekker, New York (1987). | MR | Zbl
[19] Minorsky, N.: Nonlinear Oscillations. D. Van Nostrand Company, Princeton (1962). | Zbl
[20] Myshkis, A. D.: Linear Differential Equations with Retarded Argument. Izdat. Nauka, Moskva Russian (1972). | Zbl
[21] Pinto, M.: Asymptotic solutions for second order delay differential equations. Nonlinear Anal., Theory Methods Appl. 28 (1997), 1729-1740. | DOI | MR | Zbl
[22] Pontryagin, L. S.: On the zeros of some elementary transcendental functions. Am. Math. Soc., Transl., II. Ser. 1 (1955), 95-110; Izv. Akad. Nauk SSSR, Ser. Mat. 6 Russian (1942), 115-134. | DOI | Zbl
[23] Zhang, B.: On the retarded Liénard equation. Proc. Am. Math. Soc. 115 (1992), 779-785. | Zbl
Cité par Sources :