Keywords: variable exponent; atomic decomposition; martingale Hardy space; fractional integral
@article{10_1007_s10587_015_0226_x,
author = {Hao, Zhiwei},
title = {Atomic decomposition of predictable martingale {Hardy} space with variable exponents},
journal = {Czechoslovak Mathematical Journal},
pages = {1033--1045},
year = {2015},
volume = {65},
number = {4},
doi = {10.1007/s10587-015-0226-x},
mrnumber = {3441334},
zbl = {06537709},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0226-x/}
}
TY - JOUR AU - Hao, Zhiwei TI - Atomic decomposition of predictable martingale Hardy space with variable exponents JO - Czechoslovak Mathematical Journal PY - 2015 SP - 1033 EP - 1045 VL - 65 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0226-x/ DO - 10.1007/s10587-015-0226-x LA - en ID - 10_1007_s10587_015_0226_x ER -
%0 Journal Article %A Hao, Zhiwei %T Atomic decomposition of predictable martingale Hardy space with variable exponents %J Czechoslovak Mathematical Journal %D 2015 %P 1033-1045 %V 65 %N 4 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0226-x/ %R 10.1007/s10587-015-0226-x %G en %F 10_1007_s10587_015_0226_x
Hao, Zhiwei. Atomic decomposition of predictable martingale Hardy space with variable exponents. Czechoslovak Mathematical Journal, Tome 65 (2015) no. 4, pp. 1033-1045. doi: 10.1007/s10587-015-0226-x
[1] Chao, J.-A., Ombe, H.: Commutators on dyadic martingales. Proc. Japan Acad., Ser. A 61 (1985), 35-38. | MR | Zbl
[2] Cheung, K. L., Ho, K.-P.: Boundedness of Hardy-Littlewood maximal operator on block spaces with variable exponent. Czech. Math. J. 64 (2014), 159-171. | DOI | MR
[3] Cruz-Uribe, D. V., Fiorenza, A.: Variable Lebesgue Spaces: Foundations and Harmonic Analysis. Applied and Numerical Harmonic Analysis Birkhäuser, New York (2013). | MR | Zbl
[4] Cruz-Uribe, D., Fiorenza, A., Martell, J. M., Pérez, C.: The boundedness of classical operators on variable {$L^p$} spaces. Ann. Acad. Sci. Fenn., Math. 31 (2006), 239-264. | MR | Zbl
[5] Cruz-Uribe, D., Wang, L.-A. D.: Variable Hardy spaces. Indiana Univ. Math. J. 63 (2014), 447-493. | DOI | MR | Zbl
[6] Diening, L.: Maximal function on generalized Lebesgue spaces {$L^{p(\cdot)}$}. Math. Inequal. Appl. 7 (2004), 245-253. | MR | Zbl
[7] Diening, L., H{ä}stö, P., Roudenko, S.: Function spaces of variable smoothness and integrability. J. Funct. Anal. 256 (2009), 1731-1768. | DOI | MR | Zbl
[8] Fan, X., Zhao, D.: On the spaces {$L^{p(x)}(\Omega)$} and {$W^{m,p(x)}(\Omega)$}. J. Math. Anal. Appl. 263 (2001), 424-446. | MR | Zbl
[9] Hao, Z., Jiao, Y.: Fractional integral on martingale Hardy spaces with variable exponents. Fract. Calc. Appl. Anal. 18 (2015), 1128-1145. | MR
[10] Ho, K.-P.: John-Nirenberg inequalities on Lebesgue spaces with variable exponents. Taiwanese J. Math. 18 (2014), 1107-1118. | DOI | MR
[11] Jiao, Y., Peng, L., Liu, P.: Atomic decompositions of Lorentz martingale spaces and applications. J. Funct. Spaces Appl. 7 (2009), 153-166. | DOI | MR
[12] Jiao, Y., Wu, L., Yang, A., Yi, R.: The predual and John-Nirenberg inequalities on generalized BMO martingale spaces. (to appear) in Trans. Amer. Math. Soc (2014), arXiv:1408.4641v1 [math.FA], 20 Aug. 2014. | MR
[13] Jiao, Y., Xie, G., Zhou, D.: Dual spaces and John-Nirenberg inequalities of martingale Hardy-Lorentz-Karamata spaces. Q. J. Math. 66 (2015), 605-623. | DOI | MR | Zbl
[14] Kováčik, O., Rákosník, J.: On spaces {$L^{p(x)}$} and {$W^{k,p(x)}$}. Czech. Math. J. 41 (1991), 592-618. | MR
[15] Liu, P., Hou, Y.: Atomic decompositions of Banach-space-valued martingales. Sci. China, Ser. A 42 (1999), 38-47. | DOI | MR | Zbl
[16] Miyamoto, T., Nakai, E., Sadasue, G.: Martingale Orlicz-Hardy spaces. Math. Nachr. 285 (2012), 670-686. | DOI | MR | Zbl
[17] Nakai, E., Sadasue, G.: Martingale Morrey-Campanato spaces and fractional integrals. J. Funct. Spaces Appl. 2012 (2012), Article ID 673929, 29 pages. | MR | Zbl
[18] Nakai, E., Sawano, Y.: Hardy spaces with variable exponents and generalized Campanato spaces. J. Funct. Anal. 262 (2012), 3665-3748. | DOI | MR | Zbl
[19] Ohno, T., Shimomura, T.: Sobolev embeddings for Riesz potentials of functions in grand Morrey spaces of variable exponents over non-doubling measure spaces. Czech. Math. J. 64 (2014), 209-228. | DOI | MR
[20] Orlicz, W.: Über konjugierte Exponentenfolgen. Stud. Math. 3 German (1931), 200-211. | DOI | Zbl
[21] Sadasue, G.: Fractional integrals on martingale Hardy spaces for $0. Mem. Osaka Kyoiku Univ., Ser. III, Nat. Sci. Appl. Sci. 60 (2011), 1-7. MR 2963747
[22] Sawano, Y.: Atomic decompositions of Hardy spaces with variable exponents and its application to bounded linear operators. Integral Equations Oper. Theory 77 (2013), 123-148. | DOI | MR | Zbl
[23] Weisz, F.: Martingale Hardy Spaces and Their Applications in Fourier Analysis. Lecture Notes in Mathematics 1568 Springer, Berlin (1994). | DOI | MR | Zbl
[24] Wu, L., Hao, Z., Jiao, Y.: John-Nirenberg inequalities with variable exponents on probability spaces. Tokyo J. Math. 38 (2) (2015). | MR
[25] Yi, R., Wu, L., Jiao, Y.: New John-Nirenberg inequalities for martingales. Stat. Probab. Lett. 86 (2014), 68-73. | DOI | MR | Zbl
Cité par Sources :