Keywords: finitistic dimension; restricted injective dimension; tilting module
@article{10_1007_s10587_015_0225_y,
author = {Wu, Dejun},
title = {Finitistic dimension and restricted injective dimension},
journal = {Czechoslovak Mathematical Journal},
pages = {1023--1031},
year = {2015},
volume = {65},
number = {4},
doi = {10.1007/s10587-015-0225-y},
mrnumber = {3441333},
zbl = {06537708},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0225-y/}
}
TY - JOUR AU - Wu, Dejun TI - Finitistic dimension and restricted injective dimension JO - Czechoslovak Mathematical Journal PY - 2015 SP - 1023 EP - 1031 VL - 65 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0225-y/ DO - 10.1007/s10587-015-0225-y LA - en ID - 10_1007_s10587_015_0225_y ER -
Wu, Dejun. Finitistic dimension and restricted injective dimension. Czechoslovak Mathematical Journal, Tome 65 (2015) no. 4, pp. 1023-1031. doi: 10.1007/s10587-015-0225-y
[1] Angeleri-Hügel, L., Trlifaj, J.: Tilting theory and the finitistic dimension conjectures. Trans. Am. Math. Soc. 354 (2002), 4345-4358. | DOI | MR | Zbl
[2] Asadollahi, J., Salarian, S.: Gorenstein injective dimension for complexes and Iwanaga-Gorenstein rings. Commun. Algebra 34 (2006), 3009-3022. | DOI | MR | Zbl
[3] Auslander, M., Reiten, I., Smal{ø, S. O.: Representation Theory of Artin Algebras. Cambridge Studies in Advanced Mathematics 36 Cambridge University Press, Cambridge (1995). | MR | Zbl
[4] Buan, A. B., Krause, H., Solberg, {Ø.: On the lattice of cotilting modules. AMA, Algebra Montp. Announc. (electronic only) 2002 (2002), Paper 2, 6 pages. | MR | Zbl
[5] Christensen, L. W., Foxby, H.-B., Frankild, A.: Restricted homological dimensions and \hbox{Cohen}-Macaulayness. J. Algebra 251 (2002), 479-502. | DOI | MR | Zbl
[6] Green, E. L., Kirkman, E., Kuzmanovich, J.: Finitistic dimensions of finite-dimensional monomial algebras. J. Algebra 136 (1991), 37-50. | DOI | MR | Zbl
[7] Smal{ø, S. O.: Homological differences between finite and infinite dimensional representations of algebras. Infinite Length Modules. Proceedings of the Conference, Bielefeld, Germany, 1998 H. Krause et al. Trends Math. Birkhäuser, Basel (2000), 425-439. | MR | Zbl
[8] Wei, J.: Finitistic dimension and restricted flat dimension. J. Algebra 320 (2008), 116-127. | DOI | MR | Zbl
[9] Xi, C.: On the finitistic dimension conjecture. II. Related to finite global dimension. Adv. Math. 201 (2006), 116-142. | DOI | MR | Zbl
Cité par Sources :