A note on infinite $aS$-groups
Czechoslovak Mathematical Journal, Tome 65 (2015) no. 4, pp. 1003-1009
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $G$ be a group. If every nontrivial subgroup of $G$ has a proper supplement, then $G$ is called an $aS$-group. We study some properties of $aS$-groups. For instance, it is shown that a nilpotent group $G$ is an $aS$-group if and only if $G$ is a subdirect product of cyclic groups of prime orders. We prove that if $G$ is an $aS$-group which satisfies the descending chain condition on subgroups, then $G$ is finite. Among other results, we characterize all abelian groups for which every nontrivial quotient group is an $aS$-group. Finally, it is shown that if $G$ is an $aS$-group and $|G|\neq pq,p$, where $p$ and $q$ are primes, then $G$ has a triple factorization.
Let $G$ be a group. If every nontrivial subgroup of $G$ has a proper supplement, then $G$ is called an $aS$-group. We study some properties of $aS$-groups. For instance, it is shown that a nilpotent group $G$ is an $aS$-group if and only if $G$ is a subdirect product of cyclic groups of prime orders. We prove that if $G$ is an $aS$-group which satisfies the descending chain condition on subgroups, then $G$ is finite. Among other results, we characterize all abelian groups for which every nontrivial quotient group is an $aS$-group. Finally, it is shown that if $G$ is an $aS$-group and $|G|\neq pq,p$, where $p$ and $q$ are primes, then $G$ has a triple factorization.
DOI : 10.1007/s10587-015-0223-0
Classification : 20E15, 20E34, 20F18
Keywords: infinite $aS$-group; supplemented subgroup; nilpotent group
@article{10_1007_s10587_015_0223_0,
     author = {Nikandish, Reza and Miraftab, Babak},
     title = {A note on infinite $aS$-groups},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1003--1009},
     year = {2015},
     volume = {65},
     number = {4},
     doi = {10.1007/s10587-015-0223-0},
     mrnumber = {3441331},
     zbl = {06537706},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0223-0/}
}
TY  - JOUR
AU  - Nikandish, Reza
AU  - Miraftab, Babak
TI  - A note on infinite $aS$-groups
JO  - Czechoslovak Mathematical Journal
PY  - 2015
SP  - 1003
EP  - 1009
VL  - 65
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0223-0/
DO  - 10.1007/s10587-015-0223-0
LA  - en
ID  - 10_1007_s10587_015_0223_0
ER  - 
%0 Journal Article
%A Nikandish, Reza
%A Miraftab, Babak
%T A note on infinite $aS$-groups
%J Czechoslovak Mathematical Journal
%D 2015
%P 1003-1009
%V 65
%N 4
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0223-0/
%R 10.1007/s10587-015-0223-0
%G en
%F 10_1007_s10587_015_0223_0
Nikandish, Reza; Miraftab, Babak. A note on infinite $aS$-groups. Czechoslovak Mathematical Journal, Tome 65 (2015) no. 4, pp. 1003-1009. doi: 10.1007/s10587-015-0223-0

[1] Amberg, B.: Triply factorized groups. Groups. Vol. 1 Proc. Int. Conf., St. Andrews/UK 1989, Lond. Math. Soc. Lect. Note Ser. 159 Cambridge Univ. Press, Cambridge (1991), 1-13. | MR | Zbl

[2] Amberg, B., Kazarin, L.: Factorizations of groups and related topics. Sci. China, Ser. A 52 (2009), 217-230. | DOI | MR | Zbl

[3] Ballester-Bolinches, A., Guo, X.: On complemented subgroups of finite groups. Arch. Math. 72 (1999), 161-166. | DOI | MR | Zbl

[4] Chernikov, N. S.: Groups which are factorized by subgroups of finite exponents. Acta Appl. Math. 85 (2005), 81-92. | DOI | MR | Zbl

[5] Fuchs, L.: Infinite Abelian Groups. Vol. 1. Pure and Applied Mathematics 36 Academic Press, New York (1970).

[6] Hall, P.: Complemented groups. J. Lond. Math. Soc. 12 (1937), 201-204. | DOI | MR | Zbl

[7] Johnson, P. M.: A property of factorizable groups. Arch. Math. 60 (1993), 414-419. | DOI | MR | Zbl

[8] Kappe, L.-C., Kirtland, J.: Supplementation in groups. Glasg. Math. J. 42 (2000), 37-50. | DOI | MR | Zbl

[9] Robinson, D. J. S., Stonehewer, S. E.: Triple factorizations by abelian groups. Arch. Math. 60 (1993), 223-232. | DOI | MR | Zbl

[10] Scott, W. R.: Group Theory. Dover Publications, New York (1987). | MR | Zbl

[11] Suzuki, M.: Group Theory. I. Grundlehren der Mathematischen Wissenschaften 247 Springer, Berlin (1982). | MR | Zbl

Cité par Sources :