On the Nörlund means of Vilenkin-Fourier series
Czechoslovak Mathematical Journal, Tome 65 (2015) no. 4, pp. 983-1002
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
We prove and discuss some new $( H_{p},L_{p})$-type inequalities of weighted maximal operators of Vilenkin-Nörlund means with non-increasing coefficients $\{q_{k}\colon k\geq 0\} $. These results are the best possible in a special sense. As applications, some well-known as well as new results are pointed out in the theory of strong convergence of such Vilenkin-Nörlund means. To fulfil our main aims we also prove some new estimates of independent interest for the kernels of these summability results. \endgraf In the special cases of general Nörlund means $t_{n}$ with non-increasing coefficients analogous results can be obtained for Fejér and Cesàro means by choosing the generating sequence $\{ q_{k}\colon k\geq 0\}$ in an appropriate way.
We prove and discuss some new $( H_{p},L_{p})$-type inequalities of weighted maximal operators of Vilenkin-Nörlund means with non-increasing coefficients $\{q_{k}\colon k\geq 0\} $. These results are the best possible in a special sense. As applications, some well-known as well as new results are pointed out in the theory of strong convergence of such Vilenkin-Nörlund means. To fulfil our main aims we also prove some new estimates of independent interest for the kernels of these summability results. \endgraf In the special cases of general Nörlund means $t_{n}$ with non-increasing coefficients analogous results can be obtained for Fejér and Cesàro means by choosing the generating sequence $\{ q_{k}\colon k\geq 0\}$ in an appropriate way.
DOI :
10.1007/s10587-015-0222-1
Classification :
42B25, 42C10
Keywords: Vilenkin system; Vilenkin group; Nörlund means; martingale Hardy space; maximal operator; Vilenkin-Fourier series; strong convergence; inequality
Keywords: Vilenkin system; Vilenkin group; Nörlund means; martingale Hardy space; maximal operator; Vilenkin-Fourier series; strong convergence; inequality
@article{10_1007_s10587_015_0222_1,
author = {Blahota, Istv\'an and Persson, Lars-Erik and Tephnadze, Giorgi},
title = {On the {N\"orlund} means of {Vilenkin-Fourier} series},
journal = {Czechoslovak Mathematical Journal},
pages = {983--1002},
year = {2015},
volume = {65},
number = {4},
doi = {10.1007/s10587-015-0222-1},
mrnumber = {3441330},
zbl = {06537705},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0222-1/}
}
TY - JOUR AU - Blahota, István AU - Persson, Lars-Erik AU - Tephnadze, Giorgi TI - On the Nörlund means of Vilenkin-Fourier series JO - Czechoslovak Mathematical Journal PY - 2015 SP - 983 EP - 1002 VL - 65 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0222-1/ DO - 10.1007/s10587-015-0222-1 LA - en ID - 10_1007_s10587_015_0222_1 ER -
%0 Journal Article %A Blahota, István %A Persson, Lars-Erik %A Tephnadze, Giorgi %T On the Nörlund means of Vilenkin-Fourier series %J Czechoslovak Mathematical Journal %D 2015 %P 983-1002 %V 65 %N 4 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0222-1/ %R 10.1007/s10587-015-0222-1 %G en %F 10_1007_s10587_015_0222_1
Blahota, István; Persson, Lars-Erik; Tephnadze, Giorgi. On the Nörlund means of Vilenkin-Fourier series. Czechoslovak Mathematical Journal, Tome 65 (2015) no. 4, pp. 983-1002. doi: 10.1007/s10587-015-0222-1
Cité par Sources :