On the Nörlund means of Vilenkin-Fourier series
Czechoslovak Mathematical Journal, Tome 65 (2015) no. 4, pp. 983-1002
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We prove and discuss some new $( H_{p},L_{p})$-type inequalities of weighted maximal operators of Vilenkin-Nörlund means with non-increasing coefficients $\{q_{k}\colon k\geq 0\} $. These results are the best possible in a special sense. As applications, some well-known as well as new results are pointed out in the theory of strong convergence of such Vilenkin-Nörlund means. To fulfil our main aims we also prove some new estimates of independent interest for the kernels of these summability results. \endgraf In the special cases of general Nörlund means $t_{n}$ with non-increasing coefficients analogous results can be obtained for Fejér and Cesàro means by choosing the generating sequence $\{ q_{k}\colon k\geq 0\}$ in an appropriate way.
We prove and discuss some new $( H_{p},L_{p})$-type inequalities of weighted maximal operators of Vilenkin-Nörlund means with non-increasing coefficients $\{q_{k}\colon k\geq 0\} $. These results are the best possible in a special sense. As applications, some well-known as well as new results are pointed out in the theory of strong convergence of such Vilenkin-Nörlund means. To fulfil our main aims we also prove some new estimates of independent interest for the kernels of these summability results. \endgraf In the special cases of general Nörlund means $t_{n}$ with non-increasing coefficients analogous results can be obtained for Fejér and Cesàro means by choosing the generating sequence $\{ q_{k}\colon k\geq 0\}$ in an appropriate way.
DOI : 10.1007/s10587-015-0222-1
Classification : 42B25, 42C10
Keywords: Vilenkin system; Vilenkin group; Nörlund means; martingale Hardy space; maximal operator; Vilenkin-Fourier series; strong convergence; inequality
@article{10_1007_s10587_015_0222_1,
     author = {Blahota, Istv\'an and Persson, Lars-Erik and Tephnadze, Giorgi},
     title = {On the {N\"orlund} means of {Vilenkin-Fourier} series},
     journal = {Czechoslovak Mathematical Journal},
     pages = {983--1002},
     year = {2015},
     volume = {65},
     number = {4},
     doi = {10.1007/s10587-015-0222-1},
     mrnumber = {3441330},
     zbl = {06537705},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0222-1/}
}
TY  - JOUR
AU  - Blahota, István
AU  - Persson, Lars-Erik
AU  - Tephnadze, Giorgi
TI  - On the Nörlund means of Vilenkin-Fourier series
JO  - Czechoslovak Mathematical Journal
PY  - 2015
SP  - 983
EP  - 1002
VL  - 65
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0222-1/
DO  - 10.1007/s10587-015-0222-1
LA  - en
ID  - 10_1007_s10587_015_0222_1
ER  - 
%0 Journal Article
%A Blahota, István
%A Persson, Lars-Erik
%A Tephnadze, Giorgi
%T On the Nörlund means of Vilenkin-Fourier series
%J Czechoslovak Mathematical Journal
%D 2015
%P 983-1002
%V 65
%N 4
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0222-1/
%R 10.1007/s10587-015-0222-1
%G en
%F 10_1007_s10587_015_0222_1
Blahota, István; Persson, Lars-Erik; Tephnadze, Giorgi. On the Nörlund means of Vilenkin-Fourier series. Czechoslovak Mathematical Journal, Tome 65 (2015) no. 4, pp. 983-1002. doi: 10.1007/s10587-015-0222-1

[1] Blahota, I.: On a norm inequality with respect to Vilenkin-like systems. Acta Math. Hung. 89 (2000), 15-27. | DOI | MR | Zbl

[2] Blahota, I.: Relation between Dirichlet kernels with respect to Vilenkin-like systems. Acta Acad. Paedagog. Agriensis, Sect. Mat. (N.S.) 22 (1994), 109-114. | Zbl

[3] Blahota, I., Gát, G.: Norm summability of Nörlund logarithmic means on unbounded Vilenkin groups. Anal. Theory Appl. 24 (2008), 1-17. | DOI | MR | Zbl

[4] Blahota, I., Tephnadze, G.: On the {$(C,\alpha)$}-means with respect to the Walsh system. Anal. Math. 40 (2014), 161-174. | DOI | MR | Zbl

[5] Blahota, I., Tephnadze, G.: Strong convergence theorem for Vilenkin-Fejér means. Publ. Math. Debrecen 85 (2014), 181-196. | DOI | MR

[6] Fujii, N.: A maximal inequality for {$H^1$}-functions on a generalized Walsh-Paley group. Proc. Am. Math. Soc. 77 (1979), 111-116. | MR

[7] G{á}t, G.: Cesàro means of integrable functions with respect to unbounded Vilenkin systems. J. Approx. Theory 124 (2003), 25-43. | DOI | MR | Zbl

[8] G{á}t, G.: Investigations of certain operators with respect to the Vilenkin system. Acta Math. Hung. 61 (1993), 131-149. | DOI | MR | Zbl

[9] Gát, G., Goginava, U.: Almost everywhere convergence of {$(C,\alpha)$}-means of quadratical partial sums of double Vilenkin-Fourier series. Georgian Math. J. 13 (2006), 447-462. | MR | Zbl

[10] Gát, G., Goginava, U.: Uniform and {$L$}-convergence of logarithmic means of Walsh-Fourier series. Acta Math. Sin., Engl. Ser. 22 (2006), 497-506. | DOI | MR

[11] Gát, G., Nagy, K.: On the logarithmic summability of Fourier series. Georgian Math. J. 18 (2011), 237-248. | MR | Zbl

[12] Goginava, U.: Weak type inequality for the maximal operator of the {$(C,\alpha)$} means of two-dimensional Walsh-Fourier series. Anal. Math. 36 (2010), 1-31. | DOI | MR

[13] Goginava, U.: Maximal operators of Fejér-Walsh means. Acta Sci. Math. 74 (2008), 615-624. | MR | Zbl

[14] Goginava, U.: The maximal operator of Marcinkiewicz-Fejér means of the {$d$}-dimensional Walsh-Fourier series. East J. Approx. 12 (2006), 295-302. | MR

[15] Goginava, U.: The maximal operator of the {$(C,\alpha)$} means of the Walsh-Fourier series. Ann. Univ. Sci. Budap. Rolando Eötvös, Sect. Comput. 26 (2006), 127-135. | MR | Zbl

[16] Goginava, U.: Almost everywhere convergence of subsequence of logarithmic means of Walsh-Fourier series. Acta Math. Acad. Paedagog. Nyházi. (N.S.) (electronic only) 21 (2005), 169-175. | MR | Zbl

[17] Goginava, U.: On the approximation properties of Cesàro means of negative order of Walsh-Fourier series. J. Approx. Theory 115 (2002), 9-20. | DOI | MR | Zbl

[18] Moore, C. N.: Summable Series and Convergence Factors. Dover Publications, New York (1966). | MR | Zbl

[19] Móricz, F., Siddiqi, A. H.: Approximation by Nörlund means of Walsh-Fourier series. J. Approx. Theory 70 (1992), 375-389. | DOI | MR | Zbl

[20] Nagy, K.: Approximation by Nörlund means of double Walsh-Fourier series for Lipschitz functions. Math. Inequal. Appl. 15 (2012), 301-322. | MR | Zbl

[21] Nagy, K.: Approximation by Nörlund means of Walsh-Kaczmarz-Fourier series. Georgian Math. J. 18 (2011), 147-162. | MR | Zbl

[22] Nagy, K.: Approximation by Cesàro means of negative order of Walsh-Kaczmarz-Fourier series. East J. Approx. 16 (2010), 297-311. | MR | Zbl

[23] Nagy, K.: Approximation by Nörlund means of quadratical partial sums of double Walsh-Fourier series. Anal. Math. 36 (2010), 299-319. | DOI | MR | Zbl

[24] Pál, J., Simon, P.: On a generalization of the concept of derivative. Acta Math. Acad. Sci. Hung. 29 (1977), 155-164. | DOI | MR | Zbl

[25] Schipp, F.: Rearrangements of series in the Walsh system. Math. Notes 18 (1976), 701-706 translation from\kern 3sp Mat. Zametki 18 (1975), 193-201. | MR

[26] Simon, P.: Cesàro summability with respect to two-parameter Walsh systems. Monatsh. Math. 131 (2000), 321-334. | DOI | MR

[27] Simon, P.: Strong convergence theorem for Vilenkin-Fourier series. J. Math. Anal. Appl. 245 (2000), 52-68. | DOI | MR | Zbl

[28] Simon, P.: Investigations with respect to the Vilenkin system. Ann. Univ. Sci. Budap. Rolando Eötvös, Sect. Math. 27 (1984), 87-101. | MR | Zbl

[29] Simon, P., Weisz, F.: Weak inequalities for Cesàro and Riesz summability of Walsh-Fourier series. J. Approx. Theory 151 (2008), 1-19. | DOI | MR | Zbl

[30] Tephnadze, G.: On the maximal operators of Riesz logarithmic means of Vilenkin-Fourier series. Stud. Sci. Math. Hung. 51 (2014), 105-120. | MR | Zbl

[31] Tephnadze, G.: On the partial sums of Vilenkin-Fourier series. J. Contemp. Math. Anal. 49 23-32 Russian (2014). | DOI | MR

[32] Tephnadze, G.: Strong convergence theorems for Walsh-Fejér means. Acta Math. Hung. 142 (2014), 244-259. | DOI | MR | Zbl

[33] Tephnadze, G.: On the maximal operators of Vilenkin-Fejér means on Hardy spaces. Math. Inequal. Appl. 16 (2013), 301-312. | MR | Zbl

[34] Tephnadze, G.: On the maximal operators of Vilenkin-Fejér means. Turk. J. Math. 37 (2013), 308-318. | MR | Zbl

[35] Tephnadze, G.: A note on the Fourier coefficients and partial sums of Vilenkin-Fourier series. Acta Math. Acad. Paedagog. Nyházi. (N.S.) (electronic only) 28 (2012), 167-176. | MR | Zbl

[36] Tephnadze, G.: Fejér means of Vilenkin-Fourier series. Stud. Sci. Math. Hung. 49 (2012), 79-90. | MR | Zbl

[37] Tephnadze, G.: The maximal operators of logarithmic means of one-dimensional Vilenkin-Fourier series. Acta Math. Acad. Paedagog. Nyházi. (N.S.) (electronic only) 27 (2011), 245-256. | MR | Zbl

[38] Vilenkin, N. J.: On a class of complete orthonormal systems. Am. Math. Soc. Transl. Ser. (2), 28 (1963), 1-35 translation from\kern 3sp Izv. Akad. Nauk SSSR, Ser. Mat. 11 (1947), 363-400. | MR | Zbl

[39] Weisz, F.: $\theta$-summability of Fourier series. Acta Math. Hung. 103 (2004), 139-176. | DOI | MR | Zbl

[40] Weisz, F.: {$(C,\alpha)$} summability of Walsh-Fourier series. Anal. Math. 27 (2001), 141-155. | DOI | MR | Zbl

[41] Weisz, F.: Cesàro summability of one- and two-dimensional Walsh-Fourier series. Anal. Math. 22 (1996), 229-242. | DOI | MR | Zbl

[42] Weisz, F.: Martingale Hardy Spaces and Their Applications in Fourier Analysis. Lecture Notes in Mathematics 1568 Springer, Berlin (1994). | DOI | MR | Zbl

Cité par Sources :