Keywords: Vilenkin system; Vilenkin group; Nörlund means; martingale Hardy space; maximal operator; Vilenkin-Fourier series; strong convergence; inequality
@article{10_1007_s10587_015_0222_1,
author = {Blahota, Istv\'an and Persson, Lars-Erik and Tephnadze, Giorgi},
title = {On the {N\"orlund} means of {Vilenkin-Fourier} series},
journal = {Czechoslovak Mathematical Journal},
pages = {983--1002},
year = {2015},
volume = {65},
number = {4},
doi = {10.1007/s10587-015-0222-1},
mrnumber = {3441330},
zbl = {06537705},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0222-1/}
}
TY - JOUR AU - Blahota, István AU - Persson, Lars-Erik AU - Tephnadze, Giorgi TI - On the Nörlund means of Vilenkin-Fourier series JO - Czechoslovak Mathematical Journal PY - 2015 SP - 983 EP - 1002 VL - 65 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0222-1/ DO - 10.1007/s10587-015-0222-1 LA - en ID - 10_1007_s10587_015_0222_1 ER -
%0 Journal Article %A Blahota, István %A Persson, Lars-Erik %A Tephnadze, Giorgi %T On the Nörlund means of Vilenkin-Fourier series %J Czechoslovak Mathematical Journal %D 2015 %P 983-1002 %V 65 %N 4 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0222-1/ %R 10.1007/s10587-015-0222-1 %G en %F 10_1007_s10587_015_0222_1
Blahota, István; Persson, Lars-Erik; Tephnadze, Giorgi. On the Nörlund means of Vilenkin-Fourier series. Czechoslovak Mathematical Journal, Tome 65 (2015) no. 4, pp. 983-1002. doi: 10.1007/s10587-015-0222-1
[1] Blahota, I.: On a norm inequality with respect to Vilenkin-like systems. Acta Math. Hung. 89 (2000), 15-27. | DOI | MR | Zbl
[2] Blahota, I.: Relation between Dirichlet kernels with respect to Vilenkin-like systems. Acta Acad. Paedagog. Agriensis, Sect. Mat. (N.S.) 22 (1994), 109-114. | Zbl
[3] Blahota, I., Gát, G.: Norm summability of Nörlund logarithmic means on unbounded Vilenkin groups. Anal. Theory Appl. 24 (2008), 1-17. | DOI | MR | Zbl
[4] Blahota, I., Tephnadze, G.: On the {$(C,\alpha)$}-means with respect to the Walsh system. Anal. Math. 40 (2014), 161-174. | DOI | MR | Zbl
[5] Blahota, I., Tephnadze, G.: Strong convergence theorem for Vilenkin-Fejér means. Publ. Math. Debrecen 85 (2014), 181-196. | DOI | MR
[6] Fujii, N.: A maximal inequality for {$H^1$}-functions on a generalized Walsh-Paley group. Proc. Am. Math. Soc. 77 (1979), 111-116. | MR
[7] G{á}t, G.: Cesàro means of integrable functions with respect to unbounded Vilenkin systems. J. Approx. Theory 124 (2003), 25-43. | DOI | MR | Zbl
[8] G{á}t, G.: Investigations of certain operators with respect to the Vilenkin system. Acta Math. Hung. 61 (1993), 131-149. | DOI | MR | Zbl
[9] Gát, G., Goginava, U.: Almost everywhere convergence of {$(C,\alpha)$}-means of quadratical partial sums of double Vilenkin-Fourier series. Georgian Math. J. 13 (2006), 447-462. | MR | Zbl
[10] Gát, G., Goginava, U.: Uniform and {$L$}-convergence of logarithmic means of Walsh-Fourier series. Acta Math. Sin., Engl. Ser. 22 (2006), 497-506. | DOI | MR
[11] Gát, G., Nagy, K.: On the logarithmic summability of Fourier series. Georgian Math. J. 18 (2011), 237-248. | MR | Zbl
[12] Goginava, U.: Weak type inequality for the maximal operator of the {$(C,\alpha)$} means of two-dimensional Walsh-Fourier series. Anal. Math. 36 (2010), 1-31. | DOI | MR
[13] Goginava, U.: Maximal operators of Fejér-Walsh means. Acta Sci. Math. 74 (2008), 615-624. | MR | Zbl
[14] Goginava, U.: The maximal operator of Marcinkiewicz-Fejér means of the {$d$}-dimensional Walsh-Fourier series. East J. Approx. 12 (2006), 295-302. | MR
[15] Goginava, U.: The maximal operator of the {$(C,\alpha)$} means of the Walsh-Fourier series. Ann. Univ. Sci. Budap. Rolando Eötvös, Sect. Comput. 26 (2006), 127-135. | MR | Zbl
[16] Goginava, U.: Almost everywhere convergence of subsequence of logarithmic means of Walsh-Fourier series. Acta Math. Acad. Paedagog. Nyházi. (N.S.) (electronic only) 21 (2005), 169-175. | MR | Zbl
[17] Goginava, U.: On the approximation properties of Cesàro means of negative order of Walsh-Fourier series. J. Approx. Theory 115 (2002), 9-20. | DOI | MR | Zbl
[18] Moore, C. N.: Summable Series and Convergence Factors. Dover Publications, New York (1966). | MR | Zbl
[19] Móricz, F., Siddiqi, A. H.: Approximation by Nörlund means of Walsh-Fourier series. J. Approx. Theory 70 (1992), 375-389. | DOI | MR | Zbl
[20] Nagy, K.: Approximation by Nörlund means of double Walsh-Fourier series for Lipschitz functions. Math. Inequal. Appl. 15 (2012), 301-322. | MR | Zbl
[21] Nagy, K.: Approximation by Nörlund means of Walsh-Kaczmarz-Fourier series. Georgian Math. J. 18 (2011), 147-162. | MR | Zbl
[22] Nagy, K.: Approximation by Cesàro means of negative order of Walsh-Kaczmarz-Fourier series. East J. Approx. 16 (2010), 297-311. | MR | Zbl
[23] Nagy, K.: Approximation by Nörlund means of quadratical partial sums of double Walsh-Fourier series. Anal. Math. 36 (2010), 299-319. | DOI | MR | Zbl
[24] Pál, J., Simon, P.: On a generalization of the concept of derivative. Acta Math. Acad. Sci. Hung. 29 (1977), 155-164. | DOI | MR | Zbl
[25] Schipp, F.: Rearrangements of series in the Walsh system. Math. Notes 18 (1976), 701-706 translation from\kern 3sp Mat. Zametki 18 (1975), 193-201. | MR
[26] Simon, P.: Cesàro summability with respect to two-parameter Walsh systems. Monatsh. Math. 131 (2000), 321-334. | DOI | MR
[27] Simon, P.: Strong convergence theorem for Vilenkin-Fourier series. J. Math. Anal. Appl. 245 (2000), 52-68. | DOI | MR | Zbl
[28] Simon, P.: Investigations with respect to the Vilenkin system. Ann. Univ. Sci. Budap. Rolando Eötvös, Sect. Math. 27 (1984), 87-101. | MR | Zbl
[29] Simon, P., Weisz, F.: Weak inequalities for Cesàro and Riesz summability of Walsh-Fourier series. J. Approx. Theory 151 (2008), 1-19. | DOI | MR | Zbl
[30] Tephnadze, G.: On the maximal operators of Riesz logarithmic means of Vilenkin-Fourier series. Stud. Sci. Math. Hung. 51 (2014), 105-120. | MR | Zbl
[31] Tephnadze, G.: On the partial sums of Vilenkin-Fourier series. J. Contemp. Math. Anal. 49 23-32 Russian (2014). | DOI | MR
[32] Tephnadze, G.: Strong convergence theorems for Walsh-Fejér means. Acta Math. Hung. 142 (2014), 244-259. | DOI | MR | Zbl
[33] Tephnadze, G.: On the maximal operators of Vilenkin-Fejér means on Hardy spaces. Math. Inequal. Appl. 16 (2013), 301-312. | MR | Zbl
[34] Tephnadze, G.: On the maximal operators of Vilenkin-Fejér means. Turk. J. Math. 37 (2013), 308-318. | MR | Zbl
[35] Tephnadze, G.: A note on the Fourier coefficients and partial sums of Vilenkin-Fourier series. Acta Math. Acad. Paedagog. Nyházi. (N.S.) (electronic only) 28 (2012), 167-176. | MR | Zbl
[36] Tephnadze, G.: Fejér means of Vilenkin-Fourier series. Stud. Sci. Math. Hung. 49 (2012), 79-90. | MR | Zbl
[37] Tephnadze, G.: The maximal operators of logarithmic means of one-dimensional Vilenkin-Fourier series. Acta Math. Acad. Paedagog. Nyházi. (N.S.) (electronic only) 27 (2011), 245-256. | MR | Zbl
[38] Vilenkin, N. J.: On a class of complete orthonormal systems. Am. Math. Soc. Transl. Ser. (2), 28 (1963), 1-35 translation from\kern 3sp Izv. Akad. Nauk SSSR, Ser. Mat. 11 (1947), 363-400. | MR | Zbl
[39] Weisz, F.: $\theta$-summability of Fourier series. Acta Math. Hung. 103 (2004), 139-176. | DOI | MR | Zbl
[40] Weisz, F.: {$(C,\alpha)$} summability of Walsh-Fourier series. Anal. Math. 27 (2001), 141-155. | DOI | MR | Zbl
[41] Weisz, F.: Cesàro summability of one- and two-dimensional Walsh-Fourier series. Anal. Math. 22 (1996), 229-242. | DOI | MR | Zbl
[42] Weisz, F.: Martingale Hardy Spaces and Their Applications in Fourier Analysis. Lecture Notes in Mathematics 1568 Springer, Berlin (1994). | DOI | MR | Zbl
Cité par Sources :