Keywords: Gaussian integer; Fermat test; pseudoprime
@article{10_1007_s10587_015_0221_2,
author = {Grau, Jos\'e Mar{\'\i}a and Oller-Marc\'en, Antonio M. and Rodr{\'\i}guez, Manuel and Sadornil, Daniel},
title = {Fermat test with {Gaussian} base and {Gaussian} pseudoprimes},
journal = {Czechoslovak Mathematical Journal},
pages = {969--982},
year = {2015},
volume = {65},
number = {4},
doi = {10.1007/s10587-015-0221-2},
mrnumber = {3441329},
zbl = {06537704},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0221-2/}
}
TY - JOUR AU - Grau, José María AU - Oller-Marcén, Antonio M. AU - Rodríguez, Manuel AU - Sadornil, Daniel TI - Fermat test with Gaussian base and Gaussian pseudoprimes JO - Czechoslovak Mathematical Journal PY - 2015 SP - 969 EP - 982 VL - 65 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0221-2/ DO - 10.1007/s10587-015-0221-2 LA - en ID - 10_1007_s10587_015_0221_2 ER -
%0 Journal Article %A Grau, José María %A Oller-Marcén, Antonio M. %A Rodríguez, Manuel %A Sadornil, Daniel %T Fermat test with Gaussian base and Gaussian pseudoprimes %J Czechoslovak Mathematical Journal %D 2015 %P 969-982 %V 65 %N 4 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0221-2/ %R 10.1007/s10587-015-0221-2 %G en %F 10_1007_s10587_015_0221_2
Grau, José María; Oller-Marcén, Antonio M.; Rodríguez, Manuel; Sadornil, Daniel. Fermat test with Gaussian base and Gaussian pseudoprimes. Czechoslovak Mathematical Journal, Tome 65 (2015) no. 4, pp. 969-982. doi: 10.1007/s10587-015-0221-2
[1] Alford, W. R., Granville, A., Pomerance, C.: There are infinitely many Carmichael numbers. Ann. Math. (2) 139 (1994), 703-722. | MR | Zbl
[2] Borwein, D., Maitland, C., Skerritt, M.: Computation of an improved lower bound to Giuga's primality conjecture. Integers (electronic only) 13 (2013), Paper A67, 14 pages. | MR | Zbl
[3] Burcsi, P., Czirbusz, S., Farkas, G.: Computational investigation of Lehmer's totient problem. Ann. Univ. Sci. Budap. Rolando Eötvös, Sect. Comput. 35 (2011), 43-49. | MR | Zbl
[4] Carmichael, R. D.: Note on a new number theory function. Amer. Math. Soc. Bull. (2) 16 (1910), 232-238. | DOI | MR
[5] Cross, J. T.: The Euler $\phi$-function in the Gaussian integers. Am. Math. Mon. 90 (1983), 518-528. | DOI | MR | Zbl
[6] Echi, O.: Williams numbers. C. R. Math. Acad. Sci., Soc. R. Can. 29 (2007), 41-47. | MR | Zbl
[7] Galway, W.: Tables of pseudoprimes and related data. http://www.cecm.sfu.ca/Pseudoprimes/</b>
[8] Giuga, G.: Su una presumibile proprietà caratteristica dei numeri primi. Ist. Lombardo Sci. Lett., Rend., Cl. Sci. Mat. Natur. (3) 14 (1951), 511-528 Italian. | MR | Zbl
[9] Goldman, J. R.: Numbers of solutions of congruences: Poincaré series for strongly nondegenerate forms. Proc. Am. Math. Soc. 87 (1983), 586-590. | MR | Zbl
[10] Hardy, G. H., Wright, E. M.: An Introduction to the Theory of Numbers. Oxford University Press Oxford (2008). | MR | Zbl
[11] Lehmer, D. H.: On Euler's totient function. Bull. Am. Math. Soc. 38 (1932), 745-751. | DOI | MR | Zbl
[12] Lemmermeyer, F.: Conics---a poor man's elliptic curves. Preprint at http://www.fen.bilkent.edu.tr/ {franz/publ/conics.pdf} arXiv:math/0311306v1[math.NT].
[13] Pinch, R. G. E.: Absolute quadratic pseudoprimes. Proc. of Conf. on Algorithmic Number Theory. TUCS General Publications 46 A.-M. Ernvall-Hytönen at al. (2007), 113-128. http://tucs.fi/publications/view/?id=pErJuKaLe07a&amp;table=proceeding
[14] C. Pomerance, J. L. Selfridge, S. S. Wagstaff, Jr.: The pseudoprimes to $25\cdot 10^9$. Math. Comput. 35 (1980), 1003-1026. | MR | Zbl
[15] Schettler, J.: Lehmer's totient problem and Carmichael numbers in a PID. http://math.ucsb.edu/ {jcs/Schettler.pdf}.
[16] Silverman, J. H.: Elliptic Carmichael numbers and elliptic Korselt criteria. Acta Arith. 155 (2012), 233-246. | DOI | MR | Zbl
[17] Sloane, N. J. A.: The On-Line Encyclopedia of Integer Sequences. http://www.oeis.org | Zbl
[18] Steele, G. A.: Carmichael numbers in number rings. J. Number Theory 128 (2008), 910-917. | DOI | MR | Zbl
[19] Szele, T.: Über die endlichen Ordnungszahlen zu denen nur eine Gruppe gehört. Comment. Math. Helv. 20 (1947), 265-267 German. | DOI | MR | Zbl
[20] Tarry, G., Franel, I., Korselt, A. R., Vacca, G.: Problème chinois. L'intermédiaire des mathématiciens 6 (1899), 142-144 French www.oeis.org/wiki/File:Problème\_chinois.pdf.
[21] Williams, H. C.: On numbers analogous to the Carmichael numbers. Can. Math. Bull. 20 (1977), 133-143. | DOI | MR | Zbl
Cité par Sources :