Fermat test with Gaussian base and Gaussian pseudoprimes
Czechoslovak Mathematical Journal, Tome 65 (2015) no. 4, pp. 969-982
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
The structure of the group $(\mathbb {Z}/n\mathbb {Z})^\star $ and Fermat's little theorem are the basis for some of the best-known primality testing algorithms. Many related concepts arise: Euler's totient function and Carmichael's lambda function, Fermat pseudoprimes, Carmichael and cyclic numbers, Lehmer's totient problem, Giuga's conjecture, etc. In this paper, we present and study analogues to some of the previous concepts arising when we consider the underlying group $\mathcal {G}_n:=\{a+b{\rm i}\in \mathbb {Z}[{\rm i}]/n\mathbb {Z}[{\rm i}]\colon a^2+b^2\equiv 1\pmod n\}$. In particular, we characterize Gaussian Carmichael numbers via a Korselt's criterion and present their relation with Gaussian cyclic numbers. Finally, we present the relation between Gaussian Carmichael number and 1-Williams numbers for numbers $n \equiv 3\pmod 4$. There are also no known composite numbers less than $10^{18}$ in this family that are both pseudoprime to base $1+2{\rm i}$ and 2-pseudoprime.
DOI :
10.1007/s10587-015-0221-2
Classification :
11A25, 11A51, 11D45
Keywords: Gaussian integer; Fermat test; pseudoprime
Keywords: Gaussian integer; Fermat test; pseudoprime
@article{10_1007_s10587_015_0221_2,
author = {Grau, Jos\'e Mar{\'\i}a and Oller-Marc\'en, Antonio M. and Rodr{\'\i}guez, Manuel and Sadornil, Daniel},
title = {Fermat test with {Gaussian} base and {Gaussian} pseudoprimes},
journal = {Czechoslovak Mathematical Journal},
pages = {969--982},
publisher = {mathdoc},
volume = {65},
number = {4},
year = {2015},
doi = {10.1007/s10587-015-0221-2},
mrnumber = {3441329},
zbl = {06537704},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0221-2/}
}
TY - JOUR AU - Grau, José María AU - Oller-Marcén, Antonio M. AU - Rodríguez, Manuel AU - Sadornil, Daniel TI - Fermat test with Gaussian base and Gaussian pseudoprimes JO - Czechoslovak Mathematical Journal PY - 2015 SP - 969 EP - 982 VL - 65 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0221-2/ DO - 10.1007/s10587-015-0221-2 LA - en ID - 10_1007_s10587_015_0221_2 ER -
%0 Journal Article %A Grau, José María %A Oller-Marcén, Antonio M. %A Rodríguez, Manuel %A Sadornil, Daniel %T Fermat test with Gaussian base and Gaussian pseudoprimes %J Czechoslovak Mathematical Journal %D 2015 %P 969-982 %V 65 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0221-2/ %R 10.1007/s10587-015-0221-2 %G en %F 10_1007_s10587_015_0221_2
Grau, José María; Oller-Marcén, Antonio M.; Rodríguez, Manuel; Sadornil, Daniel. Fermat test with Gaussian base and Gaussian pseudoprimes. Czechoslovak Mathematical Journal, Tome 65 (2015) no. 4, pp. 969-982. doi: 10.1007/s10587-015-0221-2
Cité par Sources :