Keywords: \mbox {$n$-angulated} category; quotient category; mutation pair
@article{10_1007_s10587_015_0220_3,
author = {Lin, Zengqiang},
title = {$n$-angulated quotient categories induced by mutation pairs},
journal = {Czechoslovak Mathematical Journal},
pages = {953--968},
year = {2015},
volume = {65},
number = {4},
doi = {10.1007/s10587-015-0220-3},
mrnumber = {3441328},
zbl = {06537703},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0220-3/}
}
TY - JOUR AU - Lin, Zengqiang TI - $n$-angulated quotient categories induced by mutation pairs JO - Czechoslovak Mathematical Journal PY - 2015 SP - 953 EP - 968 VL - 65 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0220-3/ DO - 10.1007/s10587-015-0220-3 LA - en ID - 10_1007_s10587_015_0220_3 ER -
Lin, Zengqiang. $n$-angulated quotient categories induced by mutation pairs. Czechoslovak Mathematical Journal, Tome 65 (2015) no. 4, pp. 953-968. doi: 10.1007/s10587-015-0220-3
[1] Bergh, P. A., Thaule, M.: The Grothendieck group of an $n$-angulated category. J. Pure Appl. Algebra 218 (2014), 354-366. | DOI | MR | Zbl
[2] Bergh, P. A., Jasso, G., Thaule, M.: Higher \mbox{$n$-angulations} from local rings. (to appear) in J. Lond. Math. Soc. arXiv:1311.2089v2[math.CT] (2013). | MR
[3] Bergh, P. A., Thaule, M.: The axioms for {$n$}-angulated categories. Algebr. Geom. Topol. 13 (2013), 2405-2428. | DOI | MR | Zbl
[4] Geiss, C., Keller, B., Oppermann, S.: {$n$}-angulated categories. J. Reine Angew. Math. 675 (2013), 101-120. | MR | Zbl
[5] Happel, D.: Triangulated Categories in the Representation Theory of Finite-Dimensional Algebras. London Mathematical Society Lecture Note Series 119 Cambridge University Press, Cambridge (1988). | MR | Zbl
[6] Iyama, O., Yoshino, Y.: Mutation in triangulated categories and rigid Cohen-Macaulay modules. Invent. Math. 172 (2008), 117-168. | DOI | MR | Zbl
[7] Jasso, G.: \mbox{$n$-abelian} and \mbox{$n$-exact} categories. arXiv:1405.7805v2[math.CT] (2014). | MR
[8] J{ørgensen, P.: Torsion classes and $t$-structures in higher homological algebra. Int. Math. Res. Not. (2015), doi:10.1093/imrn/rnv265. | DOI | MR
[9] Puppe, D.: On the formal structure of stable homotopy theory. Colloquium on Algebraic Topology Lectures Matematisk Institut, Aarhus Universitet, Aarhus (1962), 65-71. | Zbl
[10] Verdier, J.-L.: Catégories dérivées. Quelques résultats (État O). Semin. Geom. Algebr. Bois-Marie, SGA 4 1/2, Lect. Notes Math. 569 Springer, New York French (1977). | Zbl
Cité par Sources :