$n$-angulated quotient categories induced by mutation pairs
Czechoslovak Mathematical Journal, Tome 65 (2015) no. 4, pp. 953-968
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Geiss, Keller and Oppermann (2013) introduced the notion of \mbox {$n$-angulated} category, which is a ``higher dimensional'' analogue of triangulated category, and showed that certain $(n-2)$-cluster tilting subcategories of triangulated categories give rise to \mbox {$n$-angulated} categories. We define mutation pairs in \mbox {$n$-angulated} categories and prove that given such a mutation pair, the corresponding quotient category carries a natural \mbox {$n$-angulated} structure. This result generalizes a theorem of Iyama-Yoshino (2008) for triangulated categories.
Geiss, Keller and Oppermann (2013) introduced the notion of \mbox {$n$-angulated} category, which is a ``higher dimensional'' analogue of triangulated category, and showed that certain $(n-2)$-cluster tilting subcategories of triangulated categories give rise to \mbox {$n$-angulated} categories. We define mutation pairs in \mbox {$n$-angulated} categories and prove that given such a mutation pair, the corresponding quotient category carries a natural \mbox {$n$-angulated} structure. This result generalizes a theorem of Iyama-Yoshino (2008) for triangulated categories.
DOI : 10.1007/s10587-015-0220-3
Classification : 18E30
Keywords: \mbox {$n$-angulated} category; quotient category; mutation pair
@article{10_1007_s10587_015_0220_3,
     author = {Lin, Zengqiang},
     title = {$n$-angulated quotient categories induced by mutation pairs},
     journal = {Czechoslovak Mathematical Journal},
     pages = {953--968},
     year = {2015},
     volume = {65},
     number = {4},
     doi = {10.1007/s10587-015-0220-3},
     mrnumber = {3441328},
     zbl = {06537703},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0220-3/}
}
TY  - JOUR
AU  - Lin, Zengqiang
TI  - $n$-angulated quotient categories induced by mutation pairs
JO  - Czechoslovak Mathematical Journal
PY  - 2015
SP  - 953
EP  - 968
VL  - 65
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0220-3/
DO  - 10.1007/s10587-015-0220-3
LA  - en
ID  - 10_1007_s10587_015_0220_3
ER  - 
%0 Journal Article
%A Lin, Zengqiang
%T $n$-angulated quotient categories induced by mutation pairs
%J Czechoslovak Mathematical Journal
%D 2015
%P 953-968
%V 65
%N 4
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0220-3/
%R 10.1007/s10587-015-0220-3
%G en
%F 10_1007_s10587_015_0220_3
Lin, Zengqiang. $n$-angulated quotient categories induced by mutation pairs. Czechoslovak Mathematical Journal, Tome 65 (2015) no. 4, pp. 953-968. doi: 10.1007/s10587-015-0220-3

[1] Bergh, P. A., Thaule, M.: The Grothendieck group of an $n$-angulated category. J. Pure Appl. Algebra 218 (2014), 354-366. | DOI | MR | Zbl

[2] Bergh, P. A., Jasso, G., Thaule, M.: Higher \mbox{$n$-angulations} from local rings. (to appear) in J. Lond. Math. Soc. arXiv:1311.2089v2[math.CT] (2013). | MR

[3] Bergh, P. A., Thaule, M.: The axioms for {$n$}-angulated categories. Algebr. Geom. Topol. 13 (2013), 2405-2428. | DOI | MR | Zbl

[4] Geiss, C., Keller, B., Oppermann, S.: {$n$}-angulated categories. J. Reine Angew. Math. 675 (2013), 101-120. | MR | Zbl

[5] Happel, D.: Triangulated Categories in the Representation Theory of Finite-Dimensional Algebras. London Mathematical Society Lecture Note Series 119 Cambridge University Press, Cambridge (1988). | MR | Zbl

[6] Iyama, O., Yoshino, Y.: Mutation in triangulated categories and rigid Cohen-Macaulay modules. Invent. Math. 172 (2008), 117-168. | DOI | MR | Zbl

[7] Jasso, G.: \mbox{$n$-abelian} and \mbox{$n$-exact} categories. arXiv:1405.7805v2[math.CT] (2014). | MR

[8] J{ørgensen, P.: Torsion classes and $t$-structures in higher homological algebra. Int. Math. Res. Not. (2015), doi:10.1093/imrn/rnv265. | DOI | MR

[9] Puppe, D.: On the formal structure of stable homotopy theory. Colloquium on Algebraic Topology Lectures Matematisk Institut, Aarhus Universitet, Aarhus (1962), 65-71. | Zbl

[10] Verdier, J.-L.: Catégories dérivées. Quelques résultats (État O). Semin. Geom. Algebr. Bois-Marie, SGA 4 1/2, Lect. Notes Math. 569 Springer, New York French (1977). | Zbl

Cité par Sources :