Order complex of ideals in a commutative ring with identity
Czechoslovak Mathematical Journal, Tome 65 (2015) no. 4, pp. 947-952
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Order complex is an important object associated to a partially ordered set. Following a suggestion from V. A. Vassiliev (1994), we investigate an order complex associated to the partially ordered set of nontrivial ideals in a commutative ring with identity. We determine the homotopy type of the geometric realization for the order complex associated to a general commutative ring with identity. We show that this complex is contractible except for semilocal rings with trivial Jacobson radical when it is homotopy equivalent to a sphere.
Order complex is an important object associated to a partially ordered set. Following a suggestion from V. A. Vassiliev (1994), we investigate an order complex associated to the partially ordered set of nontrivial ideals in a commutative ring with identity. We determine the homotopy type of the geometric realization for the order complex associated to a general commutative ring with identity. We show that this complex is contractible except for semilocal rings with trivial Jacobson radical when it is homotopy equivalent to a sphere.
DOI : 10.1007/s10587-015-0219-9
Classification : 05E40, 06A07, 13A99, 55P15
Keywords: ideal; commutative ring; order complex; homotopy type
@article{10_1007_s10587_015_0219_9,
     author = {Milo\v{s}evi\'c, Nela and Petrovi\'c, Zoran Z.},
     title = {Order complex of ideals in a commutative ring with identity},
     journal = {Czechoslovak Mathematical Journal},
     pages = {947--952},
     year = {2015},
     volume = {65},
     number = {4},
     doi = {10.1007/s10587-015-0219-9},
     mrnumber = {3441327},
     zbl = {06537702},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0219-9/}
}
TY  - JOUR
AU  - Milošević, Nela
AU  - Petrović, Zoran Z.
TI  - Order complex of ideals in a commutative ring with identity
JO  - Czechoslovak Mathematical Journal
PY  - 2015
SP  - 947
EP  - 952
VL  - 65
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0219-9/
DO  - 10.1007/s10587-015-0219-9
LA  - en
ID  - 10_1007_s10587_015_0219_9
ER  - 
%0 Journal Article
%A Milošević, Nela
%A Petrović, Zoran Z.
%T Order complex of ideals in a commutative ring with identity
%J Czechoslovak Mathematical Journal
%D 2015
%P 947-952
%V 65
%N 4
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0219-9/
%R 10.1007/s10587-015-0219-9
%G en
%F 10_1007_s10587_015_0219_9
Milošević, Nela; Petrović, Zoran Z. Order complex of ideals in a commutative ring with identity. Czechoslovak Mathematical Journal, Tome 65 (2015) no. 4, pp. 947-952. doi: 10.1007/s10587-015-0219-9

[1] Clark, E., Ehrenborg, R.: The Frobenius complex. Ann. Comb. 16 (2012), 215-232. | DOI | MR | Zbl

[2] Hatcher, A.: Algebraic Topology. Cambridge University Press Cambridge (2002). | MR | Zbl

[3] Hersh, P., Shareshian, J.: Chains of modular elements and lattice connectivity. Order 23 (2006), 339-342. | DOI | MR | Zbl

[4] Kozlov, D.: Combinatorial Algebraic Topology. Algorithms and Computation in Mathematics 21 Springer, Berlin (2008). | MR | Zbl

[5] Margolis, S. W., Saliola, F., Steinberg, B.: Combinatorial topology and the global dimension of algebras arising in combinatorics. J. Eur. Math. Soc. 17 (2015), 3037-3080. | DOI | MR

[6] Meshulam, R.: On the homological dimension of lattices. Order 25 (2008), 153-155. | DOI | MR | Zbl

[7] Munkres, J. R.: Elements of Algebraic Topology. Advanced Book Program Addison-Wesley Publishing Company, Menlo Park, California (1984). | MR | Zbl

[8] Patassini, M.: On the (non-)contractibility of the order complex of the coset poset of an alternating group. J. Algebra 343 (2011), 37-77. | DOI | MR

[9] Shareshian, J., Woodroofe, R.: Order complexes of coset posets of finite groups are not contractible. (to appear) in Adv. Math.

[10] Shelton, B.: Splitting Algebras II: The Cohomology Algebra. (to appear) in arXiv:1208. 2202.

[11] Vassiliev, V. A.: Topology of discriminants and their complements. Proc. of the International Congress of Mathematicians, ICM'94, 1994, Zürich, Switzerland. Vol. I, II S. D. Chatterji Birkhäuser Basel (1995), 209-226. | MR | Zbl

[12] Wachs, M. L.: Poset topology: tools and applications. Geometric Combinatorics E. Miller et al. IAS/Park City Math. Ser. 13 American Mathematical Society; Princeton: Institute for Advanced Studies, Providence (2007), 497-615. | MR | Zbl

Cité par Sources :