Keywords: ideal; commutative ring; order complex; homotopy type
@article{10_1007_s10587_015_0219_9,
author = {Milo\v{s}evi\'c, Nela and Petrovi\'c, Zoran Z.},
title = {Order complex of ideals in a commutative ring with identity},
journal = {Czechoslovak Mathematical Journal},
pages = {947--952},
year = {2015},
volume = {65},
number = {4},
doi = {10.1007/s10587-015-0219-9},
mrnumber = {3441327},
zbl = {06537702},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0219-9/}
}
TY - JOUR AU - Milošević, Nela AU - Petrović, Zoran Z. TI - Order complex of ideals in a commutative ring with identity JO - Czechoslovak Mathematical Journal PY - 2015 SP - 947 EP - 952 VL - 65 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0219-9/ DO - 10.1007/s10587-015-0219-9 LA - en ID - 10_1007_s10587_015_0219_9 ER -
%0 Journal Article %A Milošević, Nela %A Petrović, Zoran Z. %T Order complex of ideals in a commutative ring with identity %J Czechoslovak Mathematical Journal %D 2015 %P 947-952 %V 65 %N 4 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0219-9/ %R 10.1007/s10587-015-0219-9 %G en %F 10_1007_s10587_015_0219_9
Milošević, Nela; Petrović, Zoran Z. Order complex of ideals in a commutative ring with identity. Czechoslovak Mathematical Journal, Tome 65 (2015) no. 4, pp. 947-952. doi: 10.1007/s10587-015-0219-9
[1] Clark, E., Ehrenborg, R.: The Frobenius complex. Ann. Comb. 16 (2012), 215-232. | DOI | MR | Zbl
[2] Hatcher, A.: Algebraic Topology. Cambridge University Press Cambridge (2002). | MR | Zbl
[3] Hersh, P., Shareshian, J.: Chains of modular elements and lattice connectivity. Order 23 (2006), 339-342. | DOI | MR | Zbl
[4] Kozlov, D.: Combinatorial Algebraic Topology. Algorithms and Computation in Mathematics 21 Springer, Berlin (2008). | MR | Zbl
[5] Margolis, S. W., Saliola, F., Steinberg, B.: Combinatorial topology and the global dimension of algebras arising in combinatorics. J. Eur. Math. Soc. 17 (2015), 3037-3080. | DOI | MR
[6] Meshulam, R.: On the homological dimension of lattices. Order 25 (2008), 153-155. | DOI | MR | Zbl
[7] Munkres, J. R.: Elements of Algebraic Topology. Advanced Book Program Addison-Wesley Publishing Company, Menlo Park, California (1984). | MR | Zbl
[8] Patassini, M.: On the (non-)contractibility of the order complex of the coset poset of an alternating group. J. Algebra 343 (2011), 37-77. | DOI | MR
[9] Shareshian, J., Woodroofe, R.: Order complexes of coset posets of finite groups are not contractible. (to appear) in Adv. Math.
[10] Shelton, B.: Splitting Algebras II: The Cohomology Algebra. (to appear) in arXiv:1208. 2202.
[11] Vassiliev, V. A.: Topology of discriminants and their complements. Proc. of the International Congress of Mathematicians, ICM'94, 1994, Zürich, Switzerland. Vol. I, II S. D. Chatterji Birkhäuser Basel (1995), 209-226. | MR | Zbl
[12] Wachs, M. L.: Poset topology: tools and applications. Geometric Combinatorics E. Miller et al. IAS/Park City Math. Ser. 13 American Mathematical Society; Princeton: Institute for Advanced Studies, Providence (2007), 497-615. | MR | Zbl
Cité par Sources :