Keywords: congruence; symmetric digraph; fundamental constituent; tree; digraph product; semiregular digraph
@article{10_1007_s10587_015_0218_x,
author = {Sawkmie, Amplify and Singh, Madan Mohan},
title = {On the tree structure of the power digraphs modulo $n$},
journal = {Czechoslovak Mathematical Journal},
pages = {923--945},
year = {2015},
volume = {65},
number = {4},
doi = {10.1007/s10587-015-0218-x},
mrnumber = {3441326},
zbl = {06537701},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0218-x/}
}
TY - JOUR AU - Sawkmie, Amplify AU - Singh, Madan Mohan TI - On the tree structure of the power digraphs modulo $n$ JO - Czechoslovak Mathematical Journal PY - 2015 SP - 923 EP - 945 VL - 65 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0218-x/ DO - 10.1007/s10587-015-0218-x LA - en ID - 10_1007_s10587_015_0218_x ER -
%0 Journal Article %A Sawkmie, Amplify %A Singh, Madan Mohan %T On the tree structure of the power digraphs modulo $n$ %J Czechoslovak Mathematical Journal %D 2015 %P 923-945 %V 65 %N 4 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0218-x/ %R 10.1007/s10587-015-0218-x %G en %F 10_1007_s10587_015_0218_x
Sawkmie, Amplify; Singh, Madan Mohan. On the tree structure of the power digraphs modulo $n$. Czechoslovak Mathematical Journal, Tome 65 (2015) no. 4, pp. 923-945. doi: 10.1007/s10587-015-0218-x
[1] Deng, G., Yuan, P.: On the symmetric digraphs from powers modulo $n$. Discrete Math. 312 (2012), 720-728. | DOI | MR | Zbl
[2] Kramer-Miller, J.: Structural properties of power digraphs modulo $n$. Mathematical Sciences Technical Reports (MSTR) (2009), 11 pages, http://scholar.rose-hulman.edu/math\_mstr/11
[3] Křížek, M., Luca, F., Somer, L.: 17 Lectures on Fermat Numbers: From Number Theory to Geometry. CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC 9 Springer, New York (2001). | MR | Zbl
[4] Somer, L., Křížek, M.: The structure of digraphs associated with the congruence $x^k\equiv y\pmod n$. Czech. Math. J. 61 (2011), 337-358. | DOI | MR | Zbl
[5] Somer, L., Křížek, M.: On symmetric digraphs of the congruence $x^k\equiv y\pmod n$. Discrete Math. 309 (2009), 1999-2009. | DOI | MR
[6] Somer, L., Křížek, M.: On semiregular digraphs of the congruence $x^k\equiv y\pmod n$. Commentat. Math. Univ. Carol. 48 (2007), 41-58. | MR
[7] Wilson, B.: Power digraphs modulo $n$. Fibonacci Q. 36 (1998), 229-239. | MR | Zbl
Cité par Sources :