Some new sums related to D. H. Lehmer problem
Czechoslovak Mathematical Journal, Tome 65 (2015) no. 4, pp. 915-922
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
About Lehmer's number, many people have studied its various properties, and obtained a series of interesting results. In this paper, we consider a generalized Lehmer problem: Let $p$ be a prime, and let $N(k; p)$ denote the number of all $1 \leq a_i \leq p - 1 $ such that $a_1a_2 \cdots a_k \equiv 1 \mod p$ and $2 \mid a_i + \bar {a}_i + 1,$ $i = 1, 2, \cdots , k$. The main purpose of this paper is using the analytic method, the estimate for character sums and trigonometric sums to study the asymptotic properties of the counting function $N(k; p),$ and give an interesting asymptotic formula for it.
About Lehmer's number, many people have studied its various properties, and obtained a series of interesting results. In this paper, we consider a generalized Lehmer problem: Let $p$ be a prime, and let $N(k; p)$ denote the number of all $1 \leq a_i \leq p - 1 $ such that $a_1a_2 \cdots a_k \equiv 1 \mod p$ and $2 \mid a_i + \bar {a}_i + 1,$ $i = 1, 2, \cdots , k$. The main purpose of this paper is using the analytic method, the estimate for character sums and trigonometric sums to study the asymptotic properties of the counting function $N(k; p),$ and give an interesting asymptotic formula for it.
DOI :
10.1007/s10587-015-0217-y
Classification :
11L05, 11L40
Keywords: Lehmer number; analytic method; trigonometric sums; asymptotic formula
Keywords: Lehmer number; analytic method; trigonometric sums; asymptotic formula
@article{10_1007_s10587_015_0217_y,
author = {Zhang, Han and Zhang, Wenpeng},
title = {Some new sums related to {D.} {H.} {Lehmer} problem},
journal = {Czechoslovak Mathematical Journal},
pages = {915--922},
year = {2015},
volume = {65},
number = {4},
doi = {10.1007/s10587-015-0217-y},
mrnumber = {3441325},
zbl = {06537700},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0217-y/}
}
TY - JOUR AU - Zhang, Han AU - Zhang, Wenpeng TI - Some new sums related to D. H. Lehmer problem JO - Czechoslovak Mathematical Journal PY - 2015 SP - 915 EP - 922 VL - 65 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0217-y/ DO - 10.1007/s10587-015-0217-y LA - en ID - 10_1007_s10587_015_0217_y ER -
Zhang, Han; Zhang, Wenpeng. Some new sums related to D. H. Lehmer problem. Czechoslovak Mathematical Journal, Tome 65 (2015) no. 4, pp. 915-922. doi: 10.1007/s10587-015-0217-y
Cité par Sources :