A note on the multiplier ideals of monomial ideals
Czechoslovak Mathematical Journal, Tome 65 (2015) no. 4, pp. 905-913.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $\mathfrak {a}\subseteq {\mathbb C}[x_1,\ldots ,x_n]$ be a monomial ideal and ${\mathcal J}(\mathfrak {a}^c)$ the multiplier ideal of $\mathfrak {a}$ with coefficient $c$. Then ${\mathcal J}(\mathfrak {a}^c)$ is also a monomial ideal of ${\mathbb C}[x_1,\ldots ,x_n]$, and the equality ${\mathcal J}(\mathfrak {a}^c)=\mathfrak {a}$ implies that $0$. We mainly discuss the problem when ${\mathcal J}(\mathfrak {a})=\mathfrak {a}$ or ${\mathcal J}(\mathfrak {a}^{n+1-\varepsilon })=\mathfrak {a}$ for all $0\varepsilon 1$. It is proved that if ${\mathcal J}(\mathfrak {a})=\mathfrak {a}$ then $\mathfrak {a}$ is principal, and if ${\mathcal J}(\mathfrak {a}^{n+1-\varepsilon })=\mathfrak {a}$ holds for all $0\varepsilon 1$ then $\mathfrak {a}=(x_1,\ldots ,x_n)$. One global result is also obtained. Let $\tilde {\frak {a}}$ be the ideal sheaf on ${\mathbb P}^{n-1}$ associated with $\frak {a}$. Then it is proved that the equality ${\mathcal J}(\tilde {\mathfrak {a}})=\tilde {\mathfrak {a}}$ implies that $\tilde {\mathfrak {a}}$ is principal.
DOI : 10.1007/s10587-015-0216-z
Classification : 14F18
Keywords: multiplier ideal; monomial ideal; convex set
@article{10_1007_s10587_015_0216_z,
     author = {Gong, Cheng and Tang, Zhongming},
     title = {A note on the multiplier ideals of monomial ideals},
     journal = {Czechoslovak Mathematical Journal},
     pages = {905--913},
     publisher = {mathdoc},
     volume = {65},
     number = {4},
     year = {2015},
     doi = {10.1007/s10587-015-0216-z},
     mrnumber = {3441324},
     zbl = {06537699},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0216-z/}
}
TY  - JOUR
AU  - Gong, Cheng
AU  - Tang, Zhongming
TI  - A note on the multiplier ideals of monomial ideals
JO  - Czechoslovak Mathematical Journal
PY  - 2015
SP  - 905
EP  - 913
VL  - 65
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0216-z/
DO  - 10.1007/s10587-015-0216-z
LA  - en
ID  - 10_1007_s10587_015_0216_z
ER  - 
%0 Journal Article
%A Gong, Cheng
%A Tang, Zhongming
%T A note on the multiplier ideals of monomial ideals
%J Czechoslovak Mathematical Journal
%D 2015
%P 905-913
%V 65
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0216-z/
%R 10.1007/s10587-015-0216-z
%G en
%F 10_1007_s10587_015_0216_z
Gong, Cheng; Tang, Zhongming. A note on the multiplier ideals of monomial ideals. Czechoslovak Mathematical Journal, Tome 65 (2015) no. 4, pp. 905-913. doi : 10.1007/s10587-015-0216-z. http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0216-z/

Cité par Sources :