A note on the multiplier ideals of monomial ideals
Czechoslovak Mathematical Journal, Tome 65 (2015) no. 4, pp. 905-913
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $\mathfrak {a}\subseteq {\mathbb C}[x_1,\ldots ,x_n]$ be a monomial ideal and ${\mathcal J}(\mathfrak {a}^c)$ the multiplier ideal of $\mathfrak {a}$ with coefficient $c$. Then ${\mathcal J}(\mathfrak {a}^c)$ is also a monomial ideal of ${\mathbb C}[x_1,\ldots ,x_n]$, and the equality ${\mathcal J}(\mathfrak {a}^c)=\mathfrak {a}$ implies that $0$. We mainly discuss the problem when ${\mathcal J}(\mathfrak {a})=\mathfrak {a}$ or ${\mathcal J}(\mathfrak {a}^{n+1-\varepsilon })=\mathfrak {a}$ for all $0\varepsilon 1$. It is proved that if ${\mathcal J}(\mathfrak {a})=\mathfrak {a}$ then $\mathfrak {a}$ is principal, and if ${\mathcal J}(\mathfrak {a}^{n+1-\varepsilon })=\mathfrak {a}$ holds for all $0\varepsilon 1$ then $\mathfrak {a}=(x_1,\ldots ,x_n)$. One global result is also obtained. Let $\tilde {\frak {a}}$ be the ideal sheaf on ${\mathbb P}^{n-1}$ associated with $\frak {a}$. Then it is proved that the equality ${\mathcal J}(\tilde {\mathfrak {a}})=\tilde {\mathfrak {a}}$ implies that $\tilde {\mathfrak {a}}$ is principal.
DOI :
10.1007/s10587-015-0216-z
Classification :
14F18
Keywords: multiplier ideal; monomial ideal; convex set
Keywords: multiplier ideal; monomial ideal; convex set
@article{10_1007_s10587_015_0216_z,
author = {Gong, Cheng and Tang, Zhongming},
title = {A note on the multiplier ideals of monomial ideals},
journal = {Czechoslovak Mathematical Journal},
pages = {905--913},
publisher = {mathdoc},
volume = {65},
number = {4},
year = {2015},
doi = {10.1007/s10587-015-0216-z},
mrnumber = {3441324},
zbl = {06537699},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0216-z/}
}
TY - JOUR AU - Gong, Cheng AU - Tang, Zhongming TI - A note on the multiplier ideals of monomial ideals JO - Czechoslovak Mathematical Journal PY - 2015 SP - 905 EP - 913 VL - 65 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0216-z/ DO - 10.1007/s10587-015-0216-z LA - en ID - 10_1007_s10587_015_0216_z ER -
%0 Journal Article %A Gong, Cheng %A Tang, Zhongming %T A note on the multiplier ideals of monomial ideals %J Czechoslovak Mathematical Journal %D 2015 %P 905-913 %V 65 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0216-z/ %R 10.1007/s10587-015-0216-z %G en %F 10_1007_s10587_015_0216_z
Gong, Cheng; Tang, Zhongming. A note on the multiplier ideals of monomial ideals. Czechoslovak Mathematical Journal, Tome 65 (2015) no. 4, pp. 905-913. doi: 10.1007/s10587-015-0216-z
Cité par Sources :