Keywords: direct summand; $\mathscr {S}$-closed submodule; GCS-module; singular submodule
@article{10_1007_s10587_015_0215_0,
author = {Zeng, Qingyi},
title = {On generalized {CS-modules}},
journal = {Czechoslovak Mathematical Journal},
pages = {891--904},
year = {2015},
volume = {65},
number = {4},
doi = {10.1007/s10587-015-0215-0},
mrnumber = {3441323},
zbl = {06537698},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0215-0/}
}
Zeng, Qingyi. On generalized CS-modules. Czechoslovak Mathematical Journal, Tome 65 (2015) no. 4, pp. 891-904. doi: 10.1007/s10587-015-0215-0
[1] Birkenmeier, G. F., Müller, B. J., Rizvi, S. Tariq: Modules in which every fully invariant submodule is essential in a direct summand. Commun. Algebra 30 (2002), 1395-1415. | DOI | MR
[2] Chatters, A. W., Khuri, S. M.: Endomorphism rings of modules over non-singular CS rings. J. Lond. Math. Soc., II. Ser. 21 (1980), 434-444. | DOI | MR | Zbl
[3] Faith, C.: Algebra. Vol. II: Ring Theory. Grundlehren der Mathematischen Wissenschaften 191 Springer, Berlin (1976), German. | MR | Zbl
[4] Goodearl, K. R.: Ring Theory. Nonsingular Rings and Modules. Pure and Applied Mathematics 33 Marcel Dekker, New York (1976). | MR | Zbl
[5] McAdam, S.: Deep decompositions of modules. Commun. Algebra 26 (1998), 3953-3967. | DOI | MR | Zbl
[6] Nguyen, V. D., Dinh, V. H., Smith, P. F., Wisbauer, R.: Extending Modules. Pitman Research Notes in Mathematics Series 313 Longman Scientific & Technical, Harlow (1994). | MR | Zbl
[7] Wisbauer, R.: Foundations of Module and Ring Theory. Algebra, Logic and Applications 3 Gordon and Breach Science Publishers, Philadelphia (1991). | MR | Zbl
Cité par Sources :