On generalized CS-modules
Czechoslovak Mathematical Journal, Tome 65 (2015) no. 4, pp. 891-904
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
An $\mathscr {S}$-closed submodule of a module $M$ is a submodule $N$ for which $M/N$ is nonsingular. A module $M$ is called a generalized CS-module (or briefly, GCS-module) if any $\mathscr {S}$-closed submodule $N$ of $M$ is a direct summand of $M$. Any homomorphic image of a GCS-module is also a GCS-module. Any direct sum of a singular (uniform) module and a semi-simple module is a GCS-module. All nonsingular right $R$-modules are projective if and only if all right $R$-modules are GCS-modules.
DOI :
10.1007/s10587-015-0215-0
Classification :
16D20, 16D70, 16S99
Keywords: direct summand; $\mathscr {S}$-closed submodule; GCS-module; singular submodule
Keywords: direct summand; $\mathscr {S}$-closed submodule; GCS-module; singular submodule
@article{10_1007_s10587_015_0215_0,
author = {Zeng, Qingyi},
title = {On generalized {CS-modules}},
journal = {Czechoslovak Mathematical Journal},
pages = {891--904},
publisher = {mathdoc},
volume = {65},
number = {4},
year = {2015},
doi = {10.1007/s10587-015-0215-0},
mrnumber = {3441323},
zbl = {06537698},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0215-0/}
}
Zeng, Qingyi. On generalized CS-modules. Czechoslovak Mathematical Journal, Tome 65 (2015) no. 4, pp. 891-904. doi: 10.1007/s10587-015-0215-0
Cité par Sources :