Keywords: porous medium equation; gradient system; fast diffusion; asymptotic behaviour; order preservation
@article{10_1007_s10587_015_0214_1,
author = {Littig, Samuel and Voigt, J\"urgen},
title = {Porous medium equation and fast diffusion equation as gradient systems},
journal = {Czechoslovak Mathematical Journal},
pages = {869--889},
year = {2015},
volume = {65},
number = {4},
doi = {10.1007/s10587-015-0214-1},
mrnumber = {3441322},
zbl = {06537697},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0214-1/}
}
TY - JOUR AU - Littig, Samuel AU - Voigt, Jürgen TI - Porous medium equation and fast diffusion equation as gradient systems JO - Czechoslovak Mathematical Journal PY - 2015 SP - 869 EP - 889 VL - 65 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0214-1/ DO - 10.1007/s10587-015-0214-1 LA - en ID - 10_1007_s10587_015_0214_1 ER -
%0 Journal Article %A Littig, Samuel %A Voigt, Jürgen %T Porous medium equation and fast diffusion equation as gradient systems %J Czechoslovak Mathematical Journal %D 2015 %P 869-889 %V 65 %N 4 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0214-1/ %R 10.1007/s10587-015-0214-1 %G en %F 10_1007_s10587_015_0214_1
Littig, Samuel; Voigt, Jürgen. Porous medium equation and fast diffusion equation as gradient systems. Czechoslovak Mathematical Journal, Tome 65 (2015) no. 4, pp. 869-889. doi: 10.1007/s10587-015-0214-1
[1] Barbu, V.: Nonlinear Differential Equations of Monotone Types in Banach Spaces. Springer Monographs in Mathematics Berlin, Springer (2010). | MR | Zbl
[2] Boussandel, S.: Global existence and maximal regularity of solutions of gradient systems. J. Differ. Equations 250 (2011), 929-948. | DOI | MR | Zbl
[3] Brézis, H.: Monotonicity Methods in Hilbert Spaces and Some Applications to Nonlinear Partial Differential Equations. Contrib. nonlin. functional Analysis. Proc. Sympos. Univ. Wisconsin, Madison Academic Press, New York (1971), 101-156 E. Zarantonello. | MR | Zbl
[4] Brézis, H.: Opérateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert. North-Holland Mathematics Studies Amsterdam-London: North-Holland Publishing Comp.; New York, American Elsevier Publishing Comp. (1973), French. | MR | Zbl
[5] Chill, R., Fašangová, E.: Gradient Systems---13th International Internet Seminar. Matfyzpress Charles University in Prague (2010).
[6] Cioranescu, I.: Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems. Mathematics and Its Applications 62 Dordrecht, Kluwer Academic Publishers (1990). | MR | Zbl
[7] Galaktionov, V., Vázquez, J. L.: A Stability Technique for Evolution Partial Differential Equations. A Dynamical Systems Approach. Progress in Nonlinear Differential Equations and Their Applications 56 Boston, MA: Birkhäuser (2004). | MR | Zbl
[8] Otto, F.: The geometry of dissipative evolution equations: the porous medium equation. Commun. Partial Differ. Equations 26 (2001), 101-174. | DOI | MR | Zbl
[9] Pazy, A.: The Lyapunov method for semigroups of nonlinear contractions in Banach spaces. J. Anal. Math. 40 (1981), 239-262. | DOI | MR | Zbl
[10] Souplet, P.: Geometry of unbounded domains, Poincaré inequalities and stability in semilinear parabolic equations. Commun. Partial Differ. Equations 24 (1999), 951-973. | DOI | MR | Zbl
[11] Vázquez, J. L.: The Porous Medium Equation, Mathematical Theory. Oxford Mathematical Monographs; Oxford Science Publications Oxford University Press (2007). | MR | Zbl
[12] Ziemer, W. P.: Weakly Differentiable Functions. Sobolev Spaces and Functions of Bounded Variation. Graduate Texts in Mathematics 120 Springer (1989). | MR | Zbl
Cité par Sources :