Porous medium equation and fast diffusion equation as gradient systems
Czechoslovak Mathematical Journal, Tome 65 (2015) no. 4, pp. 869-889
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We show that the Porous Medium Equation and the Fast Diffusion Equation, $\dot u-\Delta u^m=f$, with $m\in (0,\infty )$, can be modeled as a gradient system in the Hilbert space $H^{-1}(\Omega )$, and we obtain existence and uniqueness of solutions in this framework. We deal with bounded and certain unbounded open sets $\Omega \subseteq \mathbb R^n$ and do not require any boundary regularity. Moreover, the approach is used to discuss the asymptotic behaviour and order preservation of solutions.
We show that the Porous Medium Equation and the Fast Diffusion Equation, $\dot u-\Delta u^m=f$, with $m\in (0,\infty )$, can be modeled as a gradient system in the Hilbert space $H^{-1}(\Omega )$, and we obtain existence and uniqueness of solutions in this framework. We deal with bounded and certain unbounded open sets $\Omega \subseteq \mathbb R^n$ and do not require any boundary regularity. Moreover, the approach is used to discuss the asymptotic behaviour and order preservation of solutions.
DOI : 10.1007/s10587-015-0214-1
Classification : 34G20, 35G25, 47H99, 47J35
Keywords: porous medium equation; gradient system; fast diffusion; asymptotic behaviour; order preservation
@article{10_1007_s10587_015_0214_1,
     author = {Littig, Samuel and Voigt, J\"urgen},
     title = {Porous medium equation and fast diffusion equation as gradient systems},
     journal = {Czechoslovak Mathematical Journal},
     pages = {869--889},
     year = {2015},
     volume = {65},
     number = {4},
     doi = {10.1007/s10587-015-0214-1},
     mrnumber = {3441322},
     zbl = {06537697},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0214-1/}
}
TY  - JOUR
AU  - Littig, Samuel
AU  - Voigt, Jürgen
TI  - Porous medium equation and fast diffusion equation as gradient systems
JO  - Czechoslovak Mathematical Journal
PY  - 2015
SP  - 869
EP  - 889
VL  - 65
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0214-1/
DO  - 10.1007/s10587-015-0214-1
LA  - en
ID  - 10_1007_s10587_015_0214_1
ER  - 
%0 Journal Article
%A Littig, Samuel
%A Voigt, Jürgen
%T Porous medium equation and fast diffusion equation as gradient systems
%J Czechoslovak Mathematical Journal
%D 2015
%P 869-889
%V 65
%N 4
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0214-1/
%R 10.1007/s10587-015-0214-1
%G en
%F 10_1007_s10587_015_0214_1
Littig, Samuel; Voigt, Jürgen. Porous medium equation and fast diffusion equation as gradient systems. Czechoslovak Mathematical Journal, Tome 65 (2015) no. 4, pp. 869-889. doi: 10.1007/s10587-015-0214-1

[1] Barbu, V.: Nonlinear Differential Equations of Monotone Types in Banach Spaces. Springer Monographs in Mathematics Berlin, Springer (2010). | MR | Zbl

[2] Boussandel, S.: Global existence and maximal regularity of solutions of gradient systems. J. Differ. Equations 250 (2011), 929-948. | DOI | MR | Zbl

[3] Brézis, H.: Monotonicity Methods in Hilbert Spaces and Some Applications to Nonlinear Partial Differential Equations. Contrib. nonlin. functional Analysis. Proc. Sympos. Univ. Wisconsin, Madison Academic Press, New York (1971), 101-156 E. Zarantonello. | MR | Zbl

[4] Brézis, H.: Opérateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert. North-Holland Mathematics Studies Amsterdam-London: North-Holland Publishing Comp.; New York, American Elsevier Publishing Comp. (1973), French. | MR | Zbl

[5] Chill, R., Fašangová, E.: Gradient Systems---13th International Internet Seminar. Matfyzpress Charles University in Prague (2010).

[6] Cioranescu, I.: Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems. Mathematics and Its Applications 62 Dordrecht, Kluwer Academic Publishers (1990). | MR | Zbl

[7] Galaktionov, V., Vázquez, J. L.: A Stability Technique for Evolution Partial Differential Equations. A Dynamical Systems Approach. Progress in Nonlinear Differential Equations and Their Applications 56 Boston, MA: Birkhäuser (2004). | MR | Zbl

[8] Otto, F.: The geometry of dissipative evolution equations: the porous medium equation. Commun. Partial Differ. Equations 26 (2001), 101-174. | DOI | MR | Zbl

[9] Pazy, A.: The Lyapunov method for semigroups of nonlinear contractions in Banach spaces. J. Anal. Math. 40 (1981), 239-262. | DOI | MR | Zbl

[10] Souplet, P.: Geometry of unbounded domains, Poincaré inequalities and stability in semilinear parabolic equations. Commun. Partial Differ. Equations 24 (1999), 951-973. | DOI | MR | Zbl

[11] Vázquez, J. L.: The Porous Medium Equation, Mathematical Theory. Oxford Mathematical Monographs; Oxford Science Publications Oxford University Press (2007). | MR | Zbl

[12] Ziemer, W. P.: Weakly Differentiable Functions. Sobolev Spaces and Functions of Bounded Variation. Graduate Texts in Mathematics 120 Springer (1989). | MR | Zbl

Cité par Sources :