Contracting endomorphisms and dualizing complexes
Czechoslovak Mathematical Journal, Tome 65 (2015) no. 3, pp. 837-865
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We investigate how one can detect the dualizing property for a chain complex over a commutative local Noetherian ring $R$. Our focus is on homological properties of contracting endomorphisms of $R$, e.g., the Frobenius endomorphism when $R$ contains a field of positive characteristic. For instance, in this case, when $R$ is $F$-finite and $C$ is a semidualizing $R$-complex, we prove that the following conditions are equivalent: (i) $C$ is a dualizing $R$-complex; (ii) $C\sim {\bold R}{\rm Hom}_R(^nR,C)$ for some $n>0$; (iii) ${\rm G}_C\text {\rm -dim} ^nR \infty $ and $C$ is derived ${\bold R}{\rm Hom}_R(^nR,C)$-reflexive for some $n>0$; and (iv) ${\rm G}_C\text {\rm -dim} ^nR \infty $ for infinitely many $n>0$.
We investigate how one can detect the dualizing property for a chain complex over a commutative local Noetherian ring $R$. Our focus is on homological properties of contracting endomorphisms of $R$, e.g., the Frobenius endomorphism when $R$ contains a field of positive characteristic. For instance, in this case, when $R$ is $F$-finite and $C$ is a semidualizing $R$-complex, we prove that the following conditions are equivalent: (i) $C$ is a dualizing $R$-complex; (ii) $C\sim {\bold R}{\rm Hom}_R(^nR,C)$ for some $n>0$; (iii) ${\rm G}_C\text {\rm -dim} ^nR \infty $ and $C$ is derived ${\bold R}{\rm Hom}_R(^nR,C)$-reflexive for some $n>0$; and (iv) ${\rm G}_C\text {\rm -dim} ^nR \infty $ for infinitely many $n>0$.
DOI : 10.1007/s10587-015-0212-3
Classification : 13A35, 13D05, 13D09
Keywords: Bass classes; contracting endomorphisms; dualizing complex; Frobenius endomorphisms; ${\rm G}_{C}$-dimension; semidualizing complex
@article{10_1007_s10587_015_0212_3,
     author = {Nasseh, Saeed and Sather-Wagstaff, Sean},
     title = {Contracting endomorphisms and dualizing complexes},
     journal = {Czechoslovak Mathematical Journal},
     pages = {837--865},
     year = {2015},
     volume = {65},
     number = {3},
     doi = {10.1007/s10587-015-0212-3},
     mrnumber = {3407609},
     zbl = {06537696},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0212-3/}
}
TY  - JOUR
AU  - Nasseh, Saeed
AU  - Sather-Wagstaff, Sean
TI  - Contracting endomorphisms and dualizing complexes
JO  - Czechoslovak Mathematical Journal
PY  - 2015
SP  - 837
EP  - 865
VL  - 65
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0212-3/
DO  - 10.1007/s10587-015-0212-3
LA  - en
ID  - 10_1007_s10587_015_0212_3
ER  - 
%0 Journal Article
%A Nasseh, Saeed
%A Sather-Wagstaff, Sean
%T Contracting endomorphisms and dualizing complexes
%J Czechoslovak Mathematical Journal
%D 2015
%P 837-865
%V 65
%N 3
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0212-3/
%R 10.1007/s10587-015-0212-3
%G en
%F 10_1007_s10587_015_0212_3
Nasseh, Saeed; Sather-Wagstaff, Sean. Contracting endomorphisms and dualizing complexes. Czechoslovak Mathematical Journal, Tome 65 (2015) no. 3, pp. 837-865. doi: 10.1007/s10587-015-0212-3

[1] André, M.: Homologie des algèbres commutatives. Die Grundlehren der mathematischen Wissenschaften 206 Springer, Berlin French (1974). | MR | Zbl

[2] Auslander, M., Bridger, M.: Stable Module Theory. Memoirs of the American Mathematical Society 94 American Mathematical Society, Providence (1969). | MR | Zbl

[3] Auslander, M., Buchsbaum, D. A.: Homological dimension in local rings. Trans. Am. Math. Soc. 85 (1957), 390-405. | DOI | MR | Zbl

[4] Avramov, L. L., Foxby, H.-B.: Ring homomorphisms and finite Gorenstein dimension. Proc. Lond. Math. Soc. (3) 75 (1997), 241-270. | DOI | MR | Zbl

[5] Avramov, L. L., Foxby, H.-B.: Locally Gorenstein homomorphisms. Am. J. Math. 114 (1992), 1007-1047. | DOI | MR | Zbl

[6] Avramov, L. L., Foxby, H.-B.: Homological dimensions of unbounded complexes. J. Pure Appl. Algebra 71 (1991), 129-155. | DOI | MR | Zbl

[7] Avramov, L. L., Foxby, H.-B., Herzog, B.: Structure of local homomorphisms. J. Algebra 164 (1994), 124-145. | DOI | MR | Zbl

[8] Avramov, L. L., Hochster, M., Iyengar, S. B., Yao, Y.: Homological invariants of modules over contracting endomorphisms. Math. Ann. 353 (2012), 275-291. | DOI | MR | Zbl

[9] Avramov, L. L., Iyengar, S. B., Lipman, J.: Reflexivity and rigidity for complexes. I. Commutative rings. Algebra Number Theory 4 (2010), 47-86. | DOI | MR | Zbl

[10] Avramov, L. L., Iyengar, S., Miller, C.: Homology over local homomorphisms. Am. J. Math. 128 (2006), 23-90. | DOI | MR | Zbl

[11] Christensen, L. W.: Semi-dualizing complexes and their Auslander categories. Appendix: Chain defects Trans. Am. Math. Soc. 353 (2001), 1839-1883. | MR | Zbl

[12] Christensen, L. W., Frankild, A., Holm, H.: On Gorenstein projective, injective and flat dimensions---a functorial description with applications. J. Algebra 302 (2006), 231-279. | DOI | MR | Zbl

[13] Christensen, L. W., Holm, H.: Ascent properties of Auslander categories. Can. J. Math. 61 (2009), 76-108. | DOI | MR | Zbl

[14] Foxby, H.-B.: Isomorphisms between complexes with applications to the homological theory of modules. Math. Scand. 40 (1977), 5-19. | DOI | MR | Zbl

[15] Foxby, H.-B., Frankild, A. J.: Cyclic modules of finite Gorenstein injective dimension and Gorenstein rings. Ill. J. Math. 51 (2007), 67-82. | DOI | MR | Zbl

[16] Foxby, H.-B., Thorup, A.: Minimal injective resolutions under flat base change. Proc. Am. Math. Soc. 67 (1977), 27-31. | DOI | MR | Zbl

[17] Frankild, A., Sather-Wagstaff, S.: Reflexivity and ring homomorphisms of finite flat dimension. Commun. Algebra 35 (2007), 461-500. | DOI | MR | Zbl

[18] Gelfand, S. I., Manin, Y. I.: Methods of Homological Algebra. Springer Monographs in Mathematics Springer, Berlin (1996), translated from the Russian Nauka Moskva (1988). | Zbl

[19] Goto, S.: A problem on Noetherian local rings of characteristic $p$. Proc. Am. Math. Soc. 64 (1977), 199-205. | MR | Zbl

[20] Grothendieck, A.: Éléments de géométrie algébrique. III. Étude cohomologique des faisceaux cohérents, Première partie (I). Publ. Math., Inst. Hautes Étud. Sci. 11 French (1961), 349-511.

[21] Hartshorne, R.: Residues and Duality. Lecture notes of a seminar on the work of A. Grothendieck, given at Harvard 1963/1964 Lecture Notes in Mathematics 20 Springer, Berlin (1966). | DOI | MR | Zbl

[22] Hungerford, T. W.: Algebra. Graduate Texts in Mathematics 73 Springer, New York (1980). | MR | Zbl

[23] Iyengar, S., Sather-Wagstaff, S.: G-dimension over local homomorphisms. Applications to the Frobenius endomorphism. Ill. J. Math. 48 (2004), 241-272. | DOI | MR | Zbl

[24] Kunz, E.: On Noetherian rings of characteristic $p$. Am. J. Math. 98 (1976), 999-1013. | DOI | MR | Zbl

[25] Kunz, E.: Characterizations of regular local rings for characteristic $p$. Am. J. Math. 91 (1969), 772-784. | DOI | MR

[26] Matsumura, H.: Commutative Ring Theory. Cambridge Studies in Advanced Mathematics 8 Cambridge University Press, Cambridge (1989). | MR | Zbl

[27] Nasseh, S., Sather-Wagstaff, S.: Cohen factorizations: Weak functoriality and applications. J. Pure Appl. Algebra 219 (2015), 622-645. | DOI | MR | Zbl

[28] Nasseh, S., Tousi, M., Yassemi, S.: Characterization of modules of finite projective dimension via Frobenius functors. Manuscr. Math. 130 (2009), 425-431. | DOI | MR | Zbl

[29] Rodicio, A. G.: On a result of Avramov. Manuscr. Math. 62 (1988), 181-185. | DOI | MR | Zbl

[30] Sather-Wagstaff, S.: Bass numbers and semidualizing complexes. Commutative Algebra and Its Applications M. Fontana et al. Conf. Proc. Fez, Morocco, 2009. Walter de Gruyter Berlin (2009), 349-381. | MR | Zbl

[31] Sather-Wagstaff, S.: Complete intersection dimensions and Foxby classes. J. Pure Appl. Algebra 212 (2008), 2594-2611. | DOI | MR | Zbl

[32] Serre, J.-P.: Sur la dimension homologique des anneaux et des modules noethériens. Proc. of the International Symposium on Algebraic Number Theory, Tokyo & Nikko, 1955 Science Council of Japan Tokyo French (1956), 175-189. | MR | Zbl

[33] Takahashi, R., Yoshino, Y.: Characterizing Cohen-Macaulay local rings by Frobenius maps. Proc. Am. Math. Soc. 132 (2004), 3177-3187. | DOI | MR | Zbl

[34] Verdier, J.-L.: On derived categories of abelian categories. G. Maltsiniotis Astérisque 239 Société Mathématique de France, Paris French (1996). | MR

[35] Verdier, J.-L.: Catégories dérivées. Quelques résultats (Etat O). Cohomologie étale. Séminaire de géométrie algébrique du Bois-Marie SGA 4 1/2; Lecture Notes in Mathematics 569 Springer, Berlin French 262-311 (1977). | MR | Zbl

[36] Yassemi, S.: G-dimension. Math. Scand. 77 (1995), 161-174. | MR | Zbl

Cité par Sources :