Contracting endomorphisms and dualizing complexes
Czechoslovak Mathematical Journal, Tome 65 (2015) no. 3, pp. 837-865
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
We investigate how one can detect the dualizing property for a chain complex over a commutative local Noetherian ring $R$. Our focus is on homological properties of contracting endomorphisms of $R$, e.g., the Frobenius endomorphism when $R$ contains a field of positive characteristic. For instance, in this case, when $R$ is $F$-finite and $C$ is a semidualizing $R$-complex, we prove that the following conditions are equivalent: (i) $C$ is a dualizing $R$-complex; (ii) $C\sim {\bold R}{\rm Hom}_R(^nR,C)$ for some $n>0$; (iii) ${\rm G}_C\text {\rm -dim} ^nR \infty $ and $C$ is derived ${\bold R}{\rm Hom}_R(^nR,C)$-reflexive for some $n>0$; and (iv) ${\rm G}_C\text {\rm -dim} ^nR \infty $ for infinitely many $n>0$.
We investigate how one can detect the dualizing property for a chain complex over a commutative local Noetherian ring $R$. Our focus is on homological properties of contracting endomorphisms of $R$, e.g., the Frobenius endomorphism when $R$ contains a field of positive characteristic. For instance, in this case, when $R$ is $F$-finite and $C$ is a semidualizing $R$-complex, we prove that the following conditions are equivalent: (i) $C$ is a dualizing $R$-complex; (ii) $C\sim {\bold R}{\rm Hom}_R(^nR,C)$ for some $n>0$; (iii) ${\rm G}_C\text {\rm -dim} ^nR \infty $ and $C$ is derived ${\bold R}{\rm Hom}_R(^nR,C)$-reflexive for some $n>0$; and (iv) ${\rm G}_C\text {\rm -dim} ^nR \infty $ for infinitely many $n>0$.
DOI :
10.1007/s10587-015-0212-3
Classification :
13A35, 13D05, 13D09
Keywords: Bass classes; contracting endomorphisms; dualizing complex; Frobenius endomorphisms; ${\rm G}_{C}$-dimension; semidualizing complex
Keywords: Bass classes; contracting endomorphisms; dualizing complex; Frobenius endomorphisms; ${\rm G}_{C}$-dimension; semidualizing complex
@article{10_1007_s10587_015_0212_3,
author = {Nasseh, Saeed and Sather-Wagstaff, Sean},
title = {Contracting endomorphisms and dualizing complexes},
journal = {Czechoslovak Mathematical Journal},
pages = {837--865},
year = {2015},
volume = {65},
number = {3},
doi = {10.1007/s10587-015-0212-3},
mrnumber = {3407609},
zbl = {06537696},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0212-3/}
}
TY - JOUR AU - Nasseh, Saeed AU - Sather-Wagstaff, Sean TI - Contracting endomorphisms and dualizing complexes JO - Czechoslovak Mathematical Journal PY - 2015 SP - 837 EP - 865 VL - 65 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0212-3/ DO - 10.1007/s10587-015-0212-3 LA - en ID - 10_1007_s10587_015_0212_3 ER -
%0 Journal Article %A Nasseh, Saeed %A Sather-Wagstaff, Sean %T Contracting endomorphisms and dualizing complexes %J Czechoslovak Mathematical Journal %D 2015 %P 837-865 %V 65 %N 3 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0212-3/ %R 10.1007/s10587-015-0212-3 %G en %F 10_1007_s10587_015_0212_3
Nasseh, Saeed; Sather-Wagstaff, Sean. Contracting endomorphisms and dualizing complexes. Czechoslovak Mathematical Journal, Tome 65 (2015) no. 3, pp. 837-865. doi: 10.1007/s10587-015-0212-3
Cité par Sources :