Some infinite sums identities
Czechoslovak Mathematical Journal, Tome 65 (2015) no. 3, pp. 819-827
We find the sum of series of the form $$ \sum _{i=1}^{\infty } \frac {f(i)}{i^{r}} $$ for some special functions $f$. The above series is a generalization of the Riemann zeta function. In particular, we take $f$ as some values of Hurwitz zeta functions, harmonic numbers, and combination of both. These generalize some of the results given in Mező's paper (2013). We use multiple zeta theory to prove all results. The series sums we have obtained are in terms of Bernoulli numbers and powers of $\pi $.
We find the sum of series of the form $$ \sum _{i=1}^{\infty } \frac {f(i)}{i^{r}} $$ for some special functions $f$. The above series is a generalization of the Riemann zeta function. In particular, we take $f$ as some values of Hurwitz zeta functions, harmonic numbers, and combination of both. These generalize some of the results given in Mező's paper (2013). We use multiple zeta theory to prove all results. The series sums we have obtained are in terms of Bernoulli numbers and powers of $\pi $.
DOI :
10.1007/s10587-015-0210-5
Classification :
11M32, 11M36
Keywords: multiple zeta values; multiple Hurwitz zeta values
Keywords: multiple zeta values; multiple Hurwitz zeta values
@article{10_1007_s10587_015_0210_5,
author = {Jaban, Meher and Bala, Sinha Sneh},
title = {Some infinite sums identities},
journal = {Czechoslovak Mathematical Journal},
pages = {819--827},
year = {2015},
volume = {65},
number = {3},
doi = {10.1007/s10587-015-0210-5},
mrnumber = {3407607},
zbl = {06537694},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0210-5/}
}
TY - JOUR AU - Jaban, Meher AU - Bala, Sinha Sneh TI - Some infinite sums identities JO - Czechoslovak Mathematical Journal PY - 2015 SP - 819 EP - 827 VL - 65 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0210-5/ DO - 10.1007/s10587-015-0210-5 LA - en ID - 10_1007_s10587_015_0210_5 ER -
Jaban, Meher; Bala, Sinha Sneh. Some infinite sums identities. Czechoslovak Mathematical Journal, Tome 65 (2015) no. 3, pp. 819-827. doi: 10.1007/s10587-015-0210-5
[1] Mező, I.: Some infinite sums arising from the Weierstrass product theorem. Appl. Math. Comput. 219 (2013), 9838-9846. | DOI | MR | Zbl
[2] Murty, M. R., Sinha, K.: Multiple Hurwitz zeta functions. Multiple Dirichlet Series, Automorphic Forms, and Analytic Number Theory. Proceedings of the Bretton Woods workshop on multiple Dirichlet series, Bretton Woods, USA, 2005. S. Friedberg et al. Proc. Sympos. Pure Math. 75 American Mathematical Society, Providence (2006), 135-156. | MR | Zbl
Cité par Sources :