Some infinite sums identities
Czechoslovak Mathematical Journal, Tome 65 (2015) no. 3, pp. 819-827.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We find the sum of series of the form $$ \sum _{i=1}^{\infty } \frac {f(i)}{i^{r}} $$ for some special functions $f$. The above series is a generalization of the Riemann zeta function. In particular, we take $f$ as some values of Hurwitz zeta functions, harmonic numbers, and combination of both. These generalize some of the results given in Mező's paper (2013). We use multiple zeta theory to prove all results. The series sums we have obtained are in terms of Bernoulli numbers and powers of $\pi $.
DOI : 10.1007/s10587-015-0210-5
Classification : 11M32, 11M36
Keywords: multiple zeta values; multiple Hurwitz zeta values
@article{10_1007_s10587_015_0210_5,
     author = {Jaban, Meher and Bala, Sinha Sneh},
     title = {Some infinite sums identities},
     journal = {Czechoslovak Mathematical Journal},
     pages = {819--827},
     publisher = {mathdoc},
     volume = {65},
     number = {3},
     year = {2015},
     doi = {10.1007/s10587-015-0210-5},
     mrnumber = {3407607},
     zbl = {06537694},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0210-5/}
}
TY  - JOUR
AU  - Jaban, Meher
AU  - Bala, Sinha Sneh
TI  - Some infinite sums identities
JO  - Czechoslovak Mathematical Journal
PY  - 2015
SP  - 819
EP  - 827
VL  - 65
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0210-5/
DO  - 10.1007/s10587-015-0210-5
LA  - en
ID  - 10_1007_s10587_015_0210_5
ER  - 
%0 Journal Article
%A Jaban, Meher
%A Bala, Sinha Sneh
%T Some infinite sums identities
%J Czechoslovak Mathematical Journal
%D 2015
%P 819-827
%V 65
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0210-5/
%R 10.1007/s10587-015-0210-5
%G en
%F 10_1007_s10587_015_0210_5
Jaban, Meher; Bala, Sinha Sneh. Some infinite sums identities. Czechoslovak Mathematical Journal, Tome 65 (2015) no. 3, pp. 819-827. doi : 10.1007/s10587-015-0210-5. http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0210-5/

Cité par Sources :