Product spaces generated by bilinear maps and duality
Czechoslovak Mathematical Journal, Tome 65 (2015) no. 3, pp. 801-817
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we analyse a definition of a product of Banach spaces that is naturally associated by duality with a space of operators that can be considered as a generalization of the notion of space of multiplication operators. This dual relation allows to understand several constructions coming from different fields of functional analysis that can be seen as instances of the abstract one when a particular product is considered. Some relevant examples and applications are shown, regarding pointwise products of Banach function spaces, spaces of integrable functions with respect to vector measures, spaces of operators, multipliers on Banach spaces of analytic functions and spaces of Lipschitz functions.
In this paper we analyse a definition of a product of Banach spaces that is naturally associated by duality with a space of operators that can be considered as a generalization of the notion of space of multiplication operators. This dual relation allows to understand several constructions coming from different fields of functional analysis that can be seen as instances of the abstract one when a particular product is considered. Some relevant examples and applications are shown, regarding pointwise products of Banach function spaces, spaces of integrable functions with respect to vector measures, spaces of operators, multipliers on Banach spaces of analytic functions and spaces of Lipschitz functions.
DOI : 10.1007/s10587-015-0209-y
Classification : 46A32, 46B10, 46E30, 47A30
Keywords: Banach space; product; multiplication operator; duality; Banach function space; Hadamard product; Lipschitz map; integration; vector measure
@article{10_1007_s10587_015_0209_y,
     author = {S\'anchez P\'erez, Enrique A.},
     title = {Product spaces generated by bilinear maps and duality},
     journal = {Czechoslovak Mathematical Journal},
     pages = {801--817},
     year = {2015},
     volume = {65},
     number = {3},
     doi = {10.1007/s10587-015-0209-y},
     mrnumber = {3407606},
     zbl = {06537693},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0209-y/}
}
TY  - JOUR
AU  - Sánchez Pérez, Enrique A.
TI  - Product spaces generated by bilinear maps and duality
JO  - Czechoslovak Mathematical Journal
PY  - 2015
SP  - 801
EP  - 817
VL  - 65
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0209-y/
DO  - 10.1007/s10587-015-0209-y
LA  - en
ID  - 10_1007_s10587_015_0209_y
ER  - 
%0 Journal Article
%A Sánchez Pérez, Enrique A.
%T Product spaces generated by bilinear maps and duality
%J Czechoslovak Mathematical Journal
%D 2015
%P 801-817
%V 65
%N 3
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0209-y/
%R 10.1007/s10587-015-0209-y
%G en
%F 10_1007_s10587_015_0209_y
Sánchez Pérez, Enrique A. Product spaces generated by bilinear maps and duality. Czechoslovak Mathematical Journal, Tome 65 (2015) no. 3, pp. 801-817. doi: 10.1007/s10587-015-0209-y

[1] Blasco, Ó., Pavlović, M.: Coefficient multipliers on Banach spaces of analytic functions. Rev. Mat. Iberoam. 27 (2011), 415-447. | DOI | MR | Zbl

[2] Calabuig, J. M., Delgado, O., Pérez, E. A. Sánchez: Generalized perfect spaces. Indag. Math., New Ser. 19 (2008), 359-378. | DOI | MR

[3] Defant, A., Floret, K.: Tensor Norms and Operator Ideals. North-Holland Mathematics Studies 176 North-Holland, Amsterdam (1993). | MR | Zbl

[4] Delgado, O., Pérez, E. A. Sánchez: Summability properties for multiplication operators on Banach function spaces. Integral Equations Oper. Theory 66 (2010), 197-214. | DOI | MR

[5] Diestel, J., Uhl, J. J., Jr., \rm: Vector Measures. Mathematical Surveys 15 American Mathematical Society, Providence (1977). | MR

[6] Fernández, A., Mayoral, F., Naranjo, F., Sáez, C., Sánchez-Pérez, E. A.: Spaces of {$p$}-integrable functions with respect to a vector measure. Positivity 10 (2006), 1-16. | DOI | MR | Zbl

[7] Ferrando, I., Pérez, E. A. Sánchez: Tensor product representation of the (pre)dual of the {$L^p$}-space of a vector measure. J. Aust. Math. Soc. 87 (2009), 211-225. | DOI | MR

[8] Ferrando, I., Rodríguez, J.: The weak topology on $L^p$ of a vector measure. Topology Appl. 155 (2008), 1439-1444. | DOI | MR | Zbl

[9] Kolwicz, P., Leśnik, K., Maligranda, L.: Pointwise products of some Banach function spaces and factorization. J. Funct. Anal. 266 (2014), 616-659. | DOI | MR | Zbl

[10] Lindenstrauss, J., Tzafriri, L.: Classical Banach Spaces. II: Function Spaces. Ergebnisse der Mathematik und ihrer Grenzgebiete 97 Springer, Berlin (1979). | MR | Zbl

[11] Mastyło, M., Sánchez-Pérez, E. A.: Köthe dual of Banach lattices generated by vector measures. Monatsh. Math. 173 (2014), 541-557. | DOI | MR | Zbl

[12] Okada, S., Ricker, W. J., Pérez, E. A. Sánchez: Optimal Domain and Integral Extension of Operators: Acting in Function Spaces. Operator Theory: Advances and Applications 180 Birkhäuser, Basel (2008). | MR

[13] Pérez, E. A. Sánchez: Factorization theorems for multiplication operators on Banach function spaces. Integral Equations Oper. Theory 80 (2014), 117-135. | DOI | MR

[14] Pérez, E. A. Sánchez: Vector measure duality and tensor product representations of {$L_p$}-spaces of vector measures. Proc. Am. Math. Soc. 132 (2004), 3319-3326. | DOI | MR

[15] Pérez, E. A. Sánchez: Compactness arguments for spaces of {$p$}-integrable functions with respect to a vector measure and factorization of operators through Lebesgue-Bochner spaces. Ill. J. Math. 45 (2001), 907-923. | DOI | MR

[16] Rueda, P., Pérez, E. A. Sánchez: Compactness in spaces of \mbox{$p$-integrable} functions with respect to a vector measure. Topol. Methods Nonlinear Anal. 45 (2015), 641-654. | DOI | MR

[17] Schep, A. R.: Products and factors of Banach function spaces. Positivity 14 (2010), 301-319. | DOI | MR | Zbl

[18] Sukochev, F., Tomskova, A.: $(E,F)$-Schur multipliers and applications. Stud. Math. 216 (2013), 111-129. | DOI | MR | Zbl

Cité par Sources :