Keywords: non-symmetric affine connection; almost geodesic mapping; $G$-almost geodesic mapping; property of reciprocity; almost geodesic mapping of the second type
@article{10_1007_s10587_015_0208_z,
author = {Stankovi\'c, Mi\'ca S. and Zlatanovi\'c, Milan L. and Vesi\'c, Nenad O.},
title = {Basic equations of $G$-almost geodesic mappings of the second type, which have the property of reciprocity},
journal = {Czechoslovak Mathematical Journal},
pages = {787--799},
year = {2015},
volume = {65},
number = {3},
doi = {10.1007/s10587-015-0208-z},
mrnumber = {3407605},
zbl = {06537692},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0208-z/}
}
TY - JOUR AU - Stanković, Mića S. AU - Zlatanović, Milan L. AU - Vesić, Nenad O. TI - Basic equations of $G$-almost geodesic mappings of the second type, which have the property of reciprocity JO - Czechoslovak Mathematical Journal PY - 2015 SP - 787 EP - 799 VL - 65 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0208-z/ DO - 10.1007/s10587-015-0208-z LA - en ID - 10_1007_s10587_015_0208_z ER -
%0 Journal Article %A Stanković, Mića S. %A Zlatanović, Milan L. %A Vesić, Nenad O. %T Basic equations of $G$-almost geodesic mappings of the second type, which have the property of reciprocity %J Czechoslovak Mathematical Journal %D 2015 %P 787-799 %V 65 %N 3 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0208-z/ %R 10.1007/s10587-015-0208-z %G en %F 10_1007_s10587_015_0208_z
Stanković, Mića S.; Zlatanović, Milan L.; Vesić, Nenad O. Basic equations of $G$-almost geodesic mappings of the second type, which have the property of reciprocity. Czechoslovak Mathematical Journal, Tome 65 (2015) no. 3, pp. 787-799. doi: 10.1007/s10587-015-0208-z
[1] Berezovskij, V., Mikeš, J.: On a classification of almost geodesic mappings of affine connection spaces. Acta Univ. Palacki. Olomuc., Fac. Rerum Nat., Math. 35 (1996), 21-24. | MR
[2] Berezovski, V. E., Mikeš, J., Vanžurová, A.: Fundamental PDE's of the canonical almost geodesic mappings of type ${\tilde\pi_1}$. Bull. Malays. Math. Sci. Soc. (2) 37 (2014), 647-659. | MR | Zbl
[3] Hall, G. S., Lonie, D. P.: Projective equivalence of Einstein spaces in general relativity. Classical Quantum Gravity 26 (2009), Article ID 125009, 10 pages. | DOI | MR | Zbl
[4] Hall, G. S., Lonie, D. P.: The principle of equivalence and cosmological metrics. J. Math. Phys. 49 Article ID 022502, 13 pages (2008). | MR | Zbl
[5] Hall, G. S., Lonie, D. P.: The principle of equivalence and projective structure in spacetimes. Classical Quantum Gravity 24 (2007), 3617-3636. | DOI | MR | Zbl
[6] Hinterleitner, I.: Geodesic mappings on compact Riemannian manifolds with conditions on sectional curvature. Publ. Inst. Math. (Beograd) (N.S.) 94 (2013), 125-130, DOI:10.2298/PIM1308125H. | DOI | MR
[7] Hinterleitner, I., Mikeš, J.: Geodesic mappings and Einstein spaces. Geometric Methods in Physics P. Kielanowski, et al. Selected papers of 30. workshop, Białowie$\dot z$a, 2011. Trends in Mathematics Birkhäuser, Basel (2013), 331-335. | MR | Zbl
[8] Hinterleitner, I., Mikeš, J.: Geodesic mappings of (pseudo-) Riemannian manifolds preserve class of differentiability. Miskolc Math. Notes 14 (2013), 575-582. | DOI | MR
[9] Mikeš, J.: Holomorphically projective mappings and their generalizations. J. Math. Sci., New York 89 (1998), 1334-1353 translation from Itogi Nauki Tekh., Ser. Sovrem Mat. Prilozh., Temat. Obz. 30 258-291 (1995). | DOI | MR
[10] Mikeš, J.: Geodesic mappings of affine-connected and Riemannian spaces. J. Math. Sci., New York 78 (1996), 311-333. | DOI | MR
[11] Mikeš, J.: Geodesic mappings of Einstein spaces. Math. Notes 28 (1981), 922-923 translation from Mat. Zametki 28 935-938, DOI:10.1007/BF01709156 Russian (1980). | DOI | MR | Zbl
[12] Mikeš, J., Pokorná, O., Starko, G.: On almost geodesic mappings ${\pi_2(e)}$ onto Riemannian spaces. J. Slovák, et al. The Proceedings of the 23th Winter School Geometry and Physics, Srní, 2003 Circolo Matemàtico di Palermo, Suppl. Rend. Circ. Mat. Palermo, II. Ser. 72 (2004), 151-157. | MR | Zbl
[13] Mikeš, J., Vanžurová, A., Hinterleitner, I.: Geodesic Mappings and Some Generalizations. Palacký University, Faculty of Science, Olomouc (2009). | MR | Zbl
[14] Minčić, S. M.: New commutation formulas in the non-symmetric affine connexion space. Publ. Inst. Math., Nouv. Sér. 22 (1977), 189-199. | MR | Zbl
[15] Minčić, S. M.: Ricci identities in the space of non-symmetric affine connexion. Mat. Vesn., N. Ser. 10 (1973), 161-172. | MR | Zbl
[16] Minčić, S. M., Stanković, M. S.: Equitorsion geodesic mappings of generalized Riemannian spaces. Publ. Inst. Math., Nouv. Sér. 61 (1997), 97-104. | MR | Zbl
[17] Minčić, S., Stanković, M.: On geodesic mappings of general affine connexion spaces and of generalized Riemannian spaces. Mat. Vesn. 49 (1997), 27-33. | MR | Zbl
[18] Sinyukov, N. S.: Geodesic Mappings of Riemannian Spaces. Russian Nauka, Moskva (1979). | MR | Zbl
[19] Stanković, M.: On a special almost geodesic mapping of third type of affine spaces. Novi Sad J. Math. 31 (2001), 125-135. | MR | Zbl
[20] Stanković, M. S.: First type almost geodesic mappings of general affine connection spaces. Novi Sad J. Math. 29 (1999), 313-323. | MR | Zbl
[21] Stanković, M. S.: On canonic almost geodesic mappings of the second type of affine spaces. Filomat 13 (1999), 105-114. | MR | Zbl
[22] Stanković, M. S., Minčić, S. M.: New special geodesic mappings of generalized Riemannian spaces. Publ. Inst. Math., Nouv. Sér. 67 (2000), 92-102. | MR | Zbl
[23] Vavříková, H., Mikeš, J., Pokorná, O., Starko, G.: On fundamental equations of almost geodesic mappings of type ${\pi_2(e)}$. Russ. Math. 51 8-12 (2007), translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2007 10-15 (2007), Russian. | DOI | MR | Zbl
Cité par Sources :