Keywords: symmetric graph; $s$-transitive graph; $(G, s)$-transitive graph
@article{10_1007_s10587_015_0207_0,
author = {Guo, Song-Tao and Hou, Hailong and Xu, Yong},
title = {A note on solvable vertex stabilizers of $s$-transitive graphs of prime valency},
journal = {Czechoslovak Mathematical Journal},
pages = {781--785},
year = {2015},
volume = {65},
number = {3},
doi = {10.1007/s10587-015-0207-0},
mrnumber = {3407604},
zbl = {06537691},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0207-0/}
}
TY - JOUR AU - Guo, Song-Tao AU - Hou, Hailong AU - Xu, Yong TI - A note on solvable vertex stabilizers of $s$-transitive graphs of prime valency JO - Czechoslovak Mathematical Journal PY - 2015 SP - 781 EP - 785 VL - 65 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0207-0/ DO - 10.1007/s10587-015-0207-0 LA - en ID - 10_1007_s10587_015_0207_0 ER -
%0 Journal Article %A Guo, Song-Tao %A Hou, Hailong %A Xu, Yong %T A note on solvable vertex stabilizers of $s$-transitive graphs of prime valency %J Czechoslovak Mathematical Journal %D 2015 %P 781-785 %V 65 %N 3 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0207-0/ %R 10.1007/s10587-015-0207-0 %G en %F 10_1007_s10587_015_0207_0
Guo, Song-Tao; Hou, Hailong; Xu, Yong. A note on solvable vertex stabilizers of $s$-transitive graphs of prime valency. Czechoslovak Mathematical Journal, Tome 65 (2015) no. 3, pp. 781-785. doi: 10.1007/s10587-015-0207-0
[1] Conder, M., Dobcsányi, P.: Trivalent symmetric graphs on up to 768 vertices. J. Comb. Math. Comb. Comput. 40 (2002), 41-63. | MR | Zbl
[2] Dixon, J. D., Mortimer, B.: Permutation Groups. Graduate Texts in Mathematics 163 Springer, New York (1996). | MR | Zbl
[3] Djoković, D. Ž.: A class of finite group-amalgams. Proc. Am. Math. Soc. 80 (1980), 22-26. | DOI | MR | Zbl
[4] Djoković, D. Ž., Miller, G. L.: Regular groups of automorphisms of cubic graphs. J. Comb. Theory, Ser. B 29 (1980), 195-230. | DOI | MR | Zbl
[5] Feng, Y.-Q., Kwak, J. H.: Cubic symmetric graphs of order a small number times a prime or a prime square. J. Comb. Theory, Ser. B 97 (2007), 627-646. | DOI | MR | Zbl
[6] Guo, S.-T., Feng, Y.-Q.: A note on pentavalent {$s$}-transitive graphs. Discrete Math. 312 (2012), 2214-2216. | DOI | MR | Zbl
[7] Huppert, B.: Endliche Gruppen I. Die Grundlehren der Mathematischen Wissenschaften 134 Springer, Berlin German (1967). | DOI | MR | Zbl
[8] Potočnik, P.: A list of 4-valent 2-arc-transitive graphs and finite faithful amalgams of index {$(4,2)$}. Eur. J. Comb. 30 (2009), 1323-1336. | DOI | MR | Zbl
[9] Weiss, R.: Presentations for {$(G,s)$}-transitive graphs of small valency. Math. Proc. Camb. Philos. Soc. 101 (1987), 7-20. | DOI | MR
[10] Weiss, R.: {$s$}-transitive graphs. Colloq. Math. Soc. János Bolyai 25 North-Holland, Amsterdam (1981), 827-847. Algebraic Methods in Graph Theory, Vol. II L. Lovász et al.; Conf. Szeged, 1978 | MR | Zbl
[11] Weiss, R.: An application of {$p$}-factorization methods to symmetric graphs. Math. Proc. Camb. Philos. Soc. 85 (1979), 43-48. | DOI | MR | Zbl
[12] Weiss, R.: Groups with a {$(B,N)$}-pair and locally transitive graphs. Nagoya Math. J. 74 (1979), 1-21. | DOI | MR | Zbl
[13] Weiss, R. M.: Über symmetrische Graphen, deren Valenz eine Primzahl ist. Math. Z. 136 German (1974), 277-278. | MR | Zbl
[14] Wielandt, H.: Finite Permutation Groups. Academic Press New York (1964). | MR | Zbl
[15] Zhou, J.-X., Feng, Y.-Q.: On symmetric graphs of valency five. Discrete Math. 310 (2010), 1725-1732. | DOI | MR | Zbl
Cité par Sources :