A note on solvable vertex stabilizers of $s$-transitive graphs of prime valency
Czechoslovak Mathematical Journal, Tome 65 (2015) no. 3, pp. 781-785
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

A graph $X$, with a group $G$ of automorphisms of $X$, is said to be $(G,s)$-transitive, for some $s\geq 1$, if $G$ is transitive on $s$-arcs but not on $(s+1)$-arcs. Let $X$ be a connected $(G,s)$-transitive graph of prime valency $p\geq 5$, and $G_v$ the vertex stabilizer of a vertex $v\in V(X)$. Suppose that $G_v$ is solvable. Weiss (1974) proved that $|G_v|\mid p(p-1)^2$. In this paper, we prove that $G_v\cong (\mathbb Z_p\rtimes \mathbb Z_m)\times \mathbb Z_n$ for some positive integers $m$ and $n$ such that $n\div m$ and $m\mid p-1$.
A graph $X$, with a group $G$ of automorphisms of $X$, is said to be $(G,s)$-transitive, for some $s\geq 1$, if $G$ is transitive on $s$-arcs but not on $(s+1)$-arcs. Let $X$ be a connected $(G,s)$-transitive graph of prime valency $p\geq 5$, and $G_v$ the vertex stabilizer of a vertex $v\in V(X)$. Suppose that $G_v$ is solvable. Weiss (1974) proved that $|G_v|\mid p(p-1)^2$. In this paper, we prove that $G_v\cong (\mathbb Z_p\rtimes \mathbb Z_m)\times \mathbb Z_n$ for some positive integers $m$ and $n$ such that $n\div m$ and $m\mid p-1$.
DOI : 10.1007/s10587-015-0207-0
Classification : 05C25, 20B25
Keywords: symmetric graph; $s$-transitive graph; $(G, s)$-transitive graph
@article{10_1007_s10587_015_0207_0,
     author = {Guo, Song-Tao and Hou, Hailong and Xu, Yong},
     title = {A note on solvable vertex stabilizers of $s$-transitive graphs of prime valency},
     journal = {Czechoslovak Mathematical Journal},
     pages = {781--785},
     year = {2015},
     volume = {65},
     number = {3},
     doi = {10.1007/s10587-015-0207-0},
     mrnumber = {3407604},
     zbl = {06537691},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0207-0/}
}
TY  - JOUR
AU  - Guo, Song-Tao
AU  - Hou, Hailong
AU  - Xu, Yong
TI  - A note on solvable vertex stabilizers of $s$-transitive graphs of prime valency
JO  - Czechoslovak Mathematical Journal
PY  - 2015
SP  - 781
EP  - 785
VL  - 65
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0207-0/
DO  - 10.1007/s10587-015-0207-0
LA  - en
ID  - 10_1007_s10587_015_0207_0
ER  - 
%0 Journal Article
%A Guo, Song-Tao
%A Hou, Hailong
%A Xu, Yong
%T A note on solvable vertex stabilizers of $s$-transitive graphs of prime valency
%J Czechoslovak Mathematical Journal
%D 2015
%P 781-785
%V 65
%N 3
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0207-0/
%R 10.1007/s10587-015-0207-0
%G en
%F 10_1007_s10587_015_0207_0
Guo, Song-Tao; Hou, Hailong; Xu, Yong. A note on solvable vertex stabilizers of $s$-transitive graphs of prime valency. Czechoslovak Mathematical Journal, Tome 65 (2015) no. 3, pp. 781-785. doi: 10.1007/s10587-015-0207-0

[1] Conder, M., Dobcsányi, P.: Trivalent symmetric graphs on up to 768 vertices. J. Comb. Math. Comb. Comput. 40 (2002), 41-63. | MR | Zbl

[2] Dixon, J. D., Mortimer, B.: Permutation Groups. Graduate Texts in Mathematics 163 Springer, New York (1996). | MR | Zbl

[3] Djoković, D. Ž.: A class of finite group-amalgams. Proc. Am. Math. Soc. 80 (1980), 22-26. | DOI | MR | Zbl

[4] Djoković, D. Ž., Miller, G. L.: Regular groups of automorphisms of cubic graphs. J. Comb. Theory, Ser. B 29 (1980), 195-230. | DOI | MR | Zbl

[5] Feng, Y.-Q., Kwak, J. H.: Cubic symmetric graphs of order a small number times a prime or a prime square. J. Comb. Theory, Ser. B 97 (2007), 627-646. | DOI | MR | Zbl

[6] Guo, S.-T., Feng, Y.-Q.: A note on pentavalent {$s$}-transitive graphs. Discrete Math. 312 (2012), 2214-2216. | DOI | MR | Zbl

[7] Huppert, B.: Endliche Gruppen I. Die Grundlehren der Mathematischen Wissenschaften 134 Springer, Berlin German (1967). | DOI | MR | Zbl

[8] Potočnik, P.: A list of 4-valent 2-arc-transitive graphs and finite faithful amalgams of index {$(4,2)$}. Eur. J. Comb. 30 (2009), 1323-1336. | DOI | MR | Zbl

[9] Weiss, R.: Presentations for {$(G,s)$}-transitive graphs of small valency. Math. Proc. Camb. Philos. Soc. 101 (1987), 7-20. | DOI | MR

[10] Weiss, R.: {$s$}-transitive graphs. Colloq. Math. Soc. János Bolyai 25 North-Holland, Amsterdam (1981), 827-847. Algebraic Methods in Graph Theory, Vol. II L. Lovász et al.; Conf. Szeged, 1978 | MR | Zbl

[11] Weiss, R.: An application of {$p$}-factorization methods to symmetric graphs. Math. Proc. Camb. Philos. Soc. 85 (1979), 43-48. | DOI | MR | Zbl

[12] Weiss, R.: Groups with a {$(B,N)$}-pair and locally transitive graphs. Nagoya Math. J. 74 (1979), 1-21. | DOI | MR | Zbl

[13] Weiss, R. M.: Über symmetrische Graphen, deren Valenz eine Primzahl ist. Math. Z. 136 German (1974), 277-278. | MR | Zbl

[14] Wielandt, H.: Finite Permutation Groups. Academic Press New York (1964). | MR | Zbl

[15] Zhou, J.-X., Feng, Y.-Q.: On symmetric graphs of valency five. Discrete Math. 310 (2010), 1725-1732. | DOI | MR | Zbl

Cité par Sources :