A note on solvable vertex stabilizers of $s$-transitive graphs of prime valency
Czechoslovak Mathematical Journal, Tome 65 (2015) no. 3, pp. 781-785
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
A graph $X$, with a group $G$ of automorphisms of $X$, is said to be $(G,s)$-transitive, for some $s\geq 1$, if $G$ is transitive on $s$-arcs but not on $(s+1)$-arcs. Let $X$ be a connected $(G,s)$-transitive graph of prime valency $p\geq 5$, and $G_v$ the vertex stabilizer of a vertex $v\in V(X)$. Suppose that $G_v$ is solvable. Weiss (1974) proved that $|G_v|\mid p(p-1)^2$. In this paper, we prove that $G_v\cong (\mathbb Z_p\rtimes \mathbb Z_m)\times \mathbb Z_n$ for some positive integers $m$ and $n$ such that $n\div m$ and $m\mid p-1$.
A graph $X$, with a group $G$ of automorphisms of $X$, is said to be $(G,s)$-transitive, for some $s\geq 1$, if $G$ is transitive on $s$-arcs but not on $(s+1)$-arcs. Let $X$ be a connected $(G,s)$-transitive graph of prime valency $p\geq 5$, and $G_v$ the vertex stabilizer of a vertex $v\in V(X)$. Suppose that $G_v$ is solvable. Weiss (1974) proved that $|G_v|\mid p(p-1)^2$. In this paper, we prove that $G_v\cong (\mathbb Z_p\rtimes \mathbb Z_m)\times \mathbb Z_n$ for some positive integers $m$ and $n$ such that $n\div m$ and $m\mid p-1$.
DOI :
10.1007/s10587-015-0207-0
Classification :
05C25, 20B25
Keywords: symmetric graph; $s$-transitive graph; $(G, s)$-transitive graph
Keywords: symmetric graph; $s$-transitive graph; $(G, s)$-transitive graph
@article{10_1007_s10587_015_0207_0,
author = {Guo, Song-Tao and Hou, Hailong and Xu, Yong},
title = {A note on solvable vertex stabilizers of $s$-transitive graphs of prime valency},
journal = {Czechoslovak Mathematical Journal},
pages = {781--785},
year = {2015},
volume = {65},
number = {3},
doi = {10.1007/s10587-015-0207-0},
mrnumber = {3407604},
zbl = {06537691},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0207-0/}
}
TY - JOUR AU - Guo, Song-Tao AU - Hou, Hailong AU - Xu, Yong TI - A note on solvable vertex stabilizers of $s$-transitive graphs of prime valency JO - Czechoslovak Mathematical Journal PY - 2015 SP - 781 EP - 785 VL - 65 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0207-0/ DO - 10.1007/s10587-015-0207-0 LA - en ID - 10_1007_s10587_015_0207_0 ER -
%0 Journal Article %A Guo, Song-Tao %A Hou, Hailong %A Xu, Yong %T A note on solvable vertex stabilizers of $s$-transitive graphs of prime valency %J Czechoslovak Mathematical Journal %D 2015 %P 781-785 %V 65 %N 3 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0207-0/ %R 10.1007/s10587-015-0207-0 %G en %F 10_1007_s10587_015_0207_0
Guo, Song-Tao; Hou, Hailong; Xu, Yong. A note on solvable vertex stabilizers of $s$-transitive graphs of prime valency. Czechoslovak Mathematical Journal, Tome 65 (2015) no. 3, pp. 781-785. doi: 10.1007/s10587-015-0207-0
Cité par Sources :