Keywords: Musielak-Orlicz-Hardy space; Schrödinger operator; $L$-harmonic function; isomorphism of Hardy space; atom; molecule
@article{10_1007_s10587_015_0206_1,
author = {Yang, Sibei},
title = {Isomorphisms and several characterizations of {Musielak-Orlicz-Hardy} spaces associated with some {Schr\"odinger} operators},
journal = {Czechoslovak Mathematical Journal},
pages = {747--779},
year = {2015},
volume = {65},
number = {3},
doi = {10.1007/s10587-015-0206-1},
mrnumber = {3407603},
zbl = {06537690},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0206-1/}
}
TY - JOUR AU - Yang, Sibei TI - Isomorphisms and several characterizations of Musielak-Orlicz-Hardy spaces associated with some Schrödinger operators JO - Czechoslovak Mathematical Journal PY - 2015 SP - 747 EP - 779 VL - 65 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0206-1/ DO - 10.1007/s10587-015-0206-1 LA - en ID - 10_1007_s10587_015_0206_1 ER -
%0 Journal Article %A Yang, Sibei %T Isomorphisms and several characterizations of Musielak-Orlicz-Hardy spaces associated with some Schrödinger operators %J Czechoslovak Mathematical Journal %D 2015 %P 747-779 %V 65 %N 3 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0206-1/ %R 10.1007/s10587-015-0206-1 %G en %F 10_1007_s10587_015_0206_1
Yang, Sibei. Isomorphisms and several characterizations of Musielak-Orlicz-Hardy spaces associated with some Schrödinger operators. Czechoslovak Mathematical Journal, Tome 65 (2015) no. 3, pp. 747-779. doi: 10.1007/s10587-015-0206-1
[1] Bonami, A., Grellier, S., Ky, L. D.: Paraproducts and products of functions in BMO$(\mathbb R^n)$ and ${\cal H}^1(\mathbb R^n)$ through wavelets. J. Math. Pures Appl. (9) 97 (2012), 230-241 French summary. | DOI | MR
[2] Bonami, A., Iwaniec, T., Jones, P., Zinsmeister, M.: On the product of functions in BMO and $H^1$. Ann. Inst. Fourier 57 (2007), 1405-1439. | MR | Zbl
[3] Bui, T. A., Cao, J., Ky, L. D., Yang, D., Yang, S.: Musielak-Orlicz-Hardy spaces associated with operators satisfying reinforced off-diagonal estimates. Anal. Geom. Metr. Spaces (electronic only) 1 (2013), 69-129. | DOI | MR | Zbl
[4] Cao, J., Chang, D.-C., Yang, D., Yang, S.: Boundedness of second order Riesz transforms associated to Schrödinger operators on Musielak-Orlicz-Hardy spaces. Commun. Pure Appl. Anal. 13 (2014), 1435-1463. | DOI | MR
[5] Duong, X. T., Yan, L.: Duality of Hardy and BMO spaces associated with operators with heat kernel bounds. J. Am. Math. Soc. 18 (2005), 943-973. | DOI | MR | Zbl
[6] Dziubański, J., Zienkiewicz, J.: A characterization of Hardy spaces associated with certain Schrödinger operators. Potential Anal. 41 (2014), 917-930. | DOI | MR | Zbl
[7] Dziubański, J., Zienkiewicz, J.: On isomorphisms of Hardy spaces associated with Schrödinger operators. J. Fourier Anal. Appl. 19 (2013), 447-456. | DOI | MR | Zbl
[8] Fefferman, C. L., Stein, E. M.: $H^p$ spaces of several variables. Acta Math. 129 (1972), 137-193. | DOI | MR
[9] García-Cuerva, J., Francia, J. L. Rubio de: Weighted Norm Inequalities and Related Topics. North-Holland Mathematics Studies 116 North-Holland, Amsterdam (1985). | MR
[10] Grafakos, L.: Modern Fourier Analysis. Graduate Texts in Mathematics 250 Springer, New York (2009). | MR | Zbl
[11] Hofmann, S., Lu, G., Mitrea, D., Mitrea, M., Yan, L.: Hardy spaces associated to non-negative self-adjoint operators satisfying Davies-Gaffney estimates. Mem. Am. Math. Soc. 1007 (2011), 78 pages. | MR | Zbl
[12] Hofmann, S., Mayboroda, S.: Hardy and BMO spaces associated to divergence form elliptic operators. Math. Ann. 344 (2009), 37-116. | DOI | MR | Zbl
[13] Hofmann, S., Mayboroda, S., McIntosh, A.: Second order elliptic operators with complex bounded measurable coefficients in $L^p$, Sobolev and Hardy spaces. Ann. Sci. Éc. Norm. Supér. (4) 44 (2011), 723-800 French summary. | DOI | MR | Zbl
[14] Hou, S., Yang, D., Yang, S.: Lusin area function and molecular characterizations of Musielak-Orlicz Hardy spaces and their applications. Commun. Contemp. Math. 15 (2013), Article ID1350029, 37 pages. | MR | Zbl
[15] Janson, S.: Generalizations of Lipschitz spaces and an application to Hardy spaces and bounded mean oscillation. Duke Math. J. 47 (1980), 959-982. | DOI | MR | Zbl
[16] Jiang, R., Yang, D.: Orlicz-Hardy spaces associated with operators satisfying Davies-Gaffney estimates. Commun. Contemp. Math. 13 (2011), 331-373. | DOI | MR | Zbl
[17] Jiang, R., Yang, D.: New Orlicz-Hardy spaces associated with divergence form elliptic operators. J. Funct. Anal. 258 (2010), 1167-1224. | DOI | MR | Zbl
[18] Jiang, R., Yang, D., Yang, D.: Maximal function characterizations of Hardy spaces associated with magnetic Schrödinger operators. Forum Math. 24 (2012), 471-494. | DOI | MR | Zbl
[19] Ky, L. D.: Endpoint estimates for commutators of singular integrals related to Schrödinger operators. To appear in Rev. Mat. Iberoam.
[20] Ky, L. D.: New Hardy spaces of Musielak-Orlicz type and boundedness of sublinear operators. Integral Equations Oper. Theory 78 (2014), 115-150. | DOI | MR | Zbl
[21] Ky, L. D.: Bilinear decompositions and commutators of singular integral operators. Trans. Am. Math. Soc. 365 (2013), 2931-2958. | MR | Zbl
[22] Musielak, J.: Orlicz Spaces and Modular Spaces. Lecture Notes in Mathematics 1034 Springer, Berlin (1983). | MR | Zbl
[23] Ouhabaz, E. M.: Analysis of Heat Equations on Domains. London Mathematical Society Monographs Series 31 Princeton University Press, Princeton (2005). | MR | Zbl
[24] Rao, M. M., Ren, Z. D.: Theory of Orlicz Spaces. Pure and Applied Mathematics 146 Marcel Dekker, New York (1991). | MR | Zbl
[25] Semenov, Y. A.: Stability of $L^p$-spectrum of generalized Schrödinger operators and equivalence of Green's functions. Int. Math. Res. Not. 12 (1997), 573-593. | DOI | MR | Zbl
[26] Simon, B.: Functional Integration and Quantum Physics. AMS Chelsea Publishing, Providence (2005). | MR | Zbl
[27] Strömberg, J.-O.: Bounded mean oscillation with Orlicz norms and duality of Hardy spaces. Indiana Univ. Math. J. 28 (1979), 511-544. | DOI | MR
[28] Strömberg, J.-O., Torchinsky, A.: Weighted Hardy Spaces. Lecture Notes in Mathematics 1381 Springer, Berlin (1989). | DOI | MR | Zbl
[29] Yan, L.: Classes of Hardy spaces associated with operators, duality theorem and applications. Trans. Am. Math. Soc. 360 (2008), 4383-4408. | DOI | MR | Zbl
[30] Yang, D., Yang, S.: Musielak-Orlicz Hardy spaces associated with operators and their applications. J. Geom. Anal. 24 (2014), 495-570. | DOI | MR | Zbl
[31] Yang, D., Yang, S.: Local Hardy spaces of Musielak-Orlicz type and their applications. Sci. China Math. 55 (2012), 1677-1720. | DOI | MR | Zbl
Cité par Sources :