Isomorphisms and several characterizations of Musielak-Orlicz-Hardy spaces associated with some Schrödinger operators
Czechoslovak Mathematical Journal, Tome 65 (2015) no. 3, pp. 747-779.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $L:=-\Delta +V$ be a Schrödinger operator on $\mathbb {R}^n$ with $n\ge 3$ and $V\ge 0$ satisfying $\Delta ^{-1} V\in L^\infty (\mathbb {R}^n)$. Assume that $\varphi \colon \mathbb {R}^n\times [0,\infty )\to [0,\infty )$ is a function such that $\varphi (x,\cdot )$ is an Orlicz function, $\varphi (\cdot ,t)\in {\mathbb A}_{\infty }(\mathbb {R}^n)$ (the class of uniformly Muckenhoupt weights). Let $w$ be an $L$-harmonic function on $\mathbb {R}^n$ with $0$, where $C_1$ and $C_2$ are positive constants. In this article, the author proves that the mapping $H_{\varphi ,L}(\mathbb {R}^n)\ni f\mapsto wf\in H_\varphi (\mathbb {R}^n)$ is an isomorphism from the Musielak-Orlicz-Hardy space associated with $L$, $H_{\varphi ,L}(\mathbb {R}^n)$, to the Musielak-Orlicz-Hardy space $H_{\varphi }(\mathbb {R}^n)$ under some assumptions on $\varphi $. As applications, the author further obtains the atomic and molecular characterizations of the space $H_{\varphi ,L}(\mathbb {R}^n)$ associated with $w$, and proves that the operator $(-\Delta )^{-1/2}L^{1/2}$ is an isomorphism of the spaces $H_{\varphi ,L}(\mathbb {R}^n)$ and $H_{\varphi }(\mathbb {R}^n)$. All these results are new even when $\varphi (x,t):=t^p$, for all $x\in \mathbb {R}^n$ and $t\in [0,\infty )$, with $p\in ({n}/{(n+\mu _0)},1)$ and some $\mu _0\in (0,1]$.
DOI : 10.1007/s10587-015-0206-1
Classification : 35J10, 42B20, 42B30, 42B35, 42B37, 46E30
Keywords: Musielak-Orlicz-Hardy space; Schrödinger operator; $L$-harmonic function; isomorphism of Hardy space; atom; molecule
@article{10_1007_s10587_015_0206_1,
     author = {Yang, Sibei},
     title = {Isomorphisms and several characterizations of {Musielak-Orlicz-Hardy} spaces associated with some {Schr\"odinger} operators},
     journal = {Czechoslovak Mathematical Journal},
     pages = {747--779},
     publisher = {mathdoc},
     volume = {65},
     number = {3},
     year = {2015},
     doi = {10.1007/s10587-015-0206-1},
     mrnumber = {3407603},
     zbl = {06537690},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0206-1/}
}
TY  - JOUR
AU  - Yang, Sibei
TI  - Isomorphisms and several characterizations of Musielak-Orlicz-Hardy spaces associated with some Schrödinger operators
JO  - Czechoslovak Mathematical Journal
PY  - 2015
SP  - 747
EP  - 779
VL  - 65
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0206-1/
DO  - 10.1007/s10587-015-0206-1
LA  - en
ID  - 10_1007_s10587_015_0206_1
ER  - 
%0 Journal Article
%A Yang, Sibei
%T Isomorphisms and several characterizations of Musielak-Orlicz-Hardy spaces associated with some Schrödinger operators
%J Czechoslovak Mathematical Journal
%D 2015
%P 747-779
%V 65
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0206-1/
%R 10.1007/s10587-015-0206-1
%G en
%F 10_1007_s10587_015_0206_1
Yang, Sibei. Isomorphisms and several characterizations of Musielak-Orlicz-Hardy spaces associated with some Schrödinger operators. Czechoslovak Mathematical Journal, Tome 65 (2015) no. 3, pp. 747-779. doi : 10.1007/s10587-015-0206-1. http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0206-1/

Cité par Sources :