Isomorphisms and several characterizations of Musielak-Orlicz-Hardy spaces associated with some Schrödinger operators
Czechoslovak Mathematical Journal, Tome 65 (2015) no. 3, pp. 747-779
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $L:=-\Delta +V$ be a Schrödinger operator on $\mathbb {R}^n$ with $n\ge 3$ and $V\ge 0$ satisfying $\Delta ^{-1} V\in L^\infty (\mathbb {R}^n)$. Assume that $\varphi \colon \mathbb {R}^n\times [0,\infty )\to [0,\infty )$ is a function such that $\varphi (x,\cdot )$ is an Orlicz function, $\varphi (\cdot ,t)\in {\mathbb A}_{\infty }(\mathbb {R}^n)$ (the class of uniformly Muckenhoupt weights). Let $w$ be an $L$-harmonic function on $\mathbb {R}^n$ with $0$, where $C_1$ and $C_2$ are positive constants. In this article, the author proves that the mapping $H_{\varphi ,L}(\mathbb {R}^n)\ni f\mapsto wf\in H_\varphi (\mathbb {R}^n)$ is an isomorphism from the Musielak-Orlicz-Hardy space associated with $L$, $H_{\varphi ,L}(\mathbb {R}^n)$, to the Musielak-Orlicz-Hardy space $H_{\varphi }(\mathbb {R}^n)$ under some assumptions on $\varphi $. As applications, the author further obtains the atomic and molecular characterizations of the space $H_{\varphi ,L}(\mathbb {R}^n)$ associated with $w$, and proves that the operator $(-\Delta )^{-1/2}L^{1/2}$ is an isomorphism of the spaces $H_{\varphi ,L}(\mathbb {R}^n)$ and $H_{\varphi }(\mathbb {R}^n)$. All these results are new even when $\varphi (x,t):=t^p$, for all $x\in \mathbb {R}^n$ and $t\in [0,\infty )$, with $p\in ({n}/{(n+\mu _0)},1)$ and some $\mu _0\in (0,1]$.
DOI :
10.1007/s10587-015-0206-1
Classification :
35J10, 42B20, 42B30, 42B35, 42B37, 46E30
Keywords: Musielak-Orlicz-Hardy space; Schrödinger operator; $L$-harmonic function; isomorphism of Hardy space; atom; molecule
Keywords: Musielak-Orlicz-Hardy space; Schrödinger operator; $L$-harmonic function; isomorphism of Hardy space; atom; molecule
@article{10_1007_s10587_015_0206_1,
author = {Yang, Sibei},
title = {Isomorphisms and several characterizations of {Musielak-Orlicz-Hardy} spaces associated with some {Schr\"odinger} operators},
journal = {Czechoslovak Mathematical Journal},
pages = {747--779},
publisher = {mathdoc},
volume = {65},
number = {3},
year = {2015},
doi = {10.1007/s10587-015-0206-1},
mrnumber = {3407603},
zbl = {06537690},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0206-1/}
}
TY - JOUR AU - Yang, Sibei TI - Isomorphisms and several characterizations of Musielak-Orlicz-Hardy spaces associated with some Schrödinger operators JO - Czechoslovak Mathematical Journal PY - 2015 SP - 747 EP - 779 VL - 65 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0206-1/ DO - 10.1007/s10587-015-0206-1 LA - en ID - 10_1007_s10587_015_0206_1 ER -
%0 Journal Article %A Yang, Sibei %T Isomorphisms and several characterizations of Musielak-Orlicz-Hardy spaces associated with some Schrödinger operators %J Czechoslovak Mathematical Journal %D 2015 %P 747-779 %V 65 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0206-1/ %R 10.1007/s10587-015-0206-1 %G en %F 10_1007_s10587_015_0206_1
Yang, Sibei. Isomorphisms and several characterizations of Musielak-Orlicz-Hardy spaces associated with some Schrödinger operators. Czechoslovak Mathematical Journal, Tome 65 (2015) no. 3, pp. 747-779. doi: 10.1007/s10587-015-0206-1
Cité par Sources :