Keywords: $\bar \partial $ operator; $\bar \partial $-Neumann operator; $q$-convex domain; Stein manifold
@article{10_1007_s10587_015_0205_2,
author = {Saber, Sayed},
title = {The $L^2$ $\bar \partial ${-Cauchy} problem on weakly $q$-pseudoconvex domains in {Stein} manifolds},
journal = {Czechoslovak Mathematical Journal},
pages = {739--745},
year = {2015},
volume = {65},
number = {3},
doi = {10.1007/s10587-015-0205-2},
mrnumber = {3407602},
zbl = {06537689},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0205-2/}
}
TY - JOUR AU - Saber, Sayed TI - The $L^2$ $\bar \partial $-Cauchy problem on weakly $q$-pseudoconvex domains in Stein manifolds JO - Czechoslovak Mathematical Journal PY - 2015 SP - 739 EP - 745 VL - 65 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0205-2/ DO - 10.1007/s10587-015-0205-2 LA - en ID - 10_1007_s10587_015_0205_2 ER -
%0 Journal Article %A Saber, Sayed %T The $L^2$ $\bar \partial $-Cauchy problem on weakly $q$-pseudoconvex domains in Stein manifolds %J Czechoslovak Mathematical Journal %D 2015 %P 739-745 %V 65 %N 3 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0205-2/ %R 10.1007/s10587-015-0205-2 %G en %F 10_1007_s10587_015_0205_2
Saber, Sayed. The $L^2$ $\bar \partial $-Cauchy problem on weakly $q$-pseudoconvex domains in Stein manifolds. Czechoslovak Mathematical Journal, Tome 65 (2015) no. 3, pp. 739-745. doi: 10.1007/s10587-015-0205-2
[1] Abdelkader, O., Saber, S.: Solution to $\bar\partial$-equations with exact support on pseudo-convex manifolds. Int. J. Geom. Methods Mod. Phys. 4 (2007), 339-348. | DOI | MR
[2] Cao, J., Shaw, M.-C., Wang, L.: Estimates for the $\bar\partial$-Neumann problem and nonexistence of $C^2$ Levi-flat hypersurfaces in {${\Bbb C} P^n$}. Math. Z. 248 (2004), 183-221 errata dtto 248 223-225 (2004). | MR
[3] Chen, S.-C., Shaw, M.-C.: Partial Differential Equations in Several Complex Variables. AMS/IP Studies in Advanced Mathematics 19 American Mathematical Society, Providence; International Press, Somerville (2001). | MR | Zbl
[4] Demailly, J.-P.: Complex analytic and differential geometry. Preprint (2009) available at http://www-fourier.ujf-grenoble.fr/\char126 demailly/manuscripts/agbook.pdf.
[5] Demailly, J.-P.: Estimations $L^2$ pour l'opérateur $\bar\partial$ d'un fibré vectoriel holomorphe semi-positif au-dessus d'une variété kählérienne complète. Ann. Sci. Éc. Norm. Supér. (4) 15 French (1982), 457-511. | MR
[6] Derridj, M.: Inégalités de Carleman et extension locale des fonctions holomorphes. Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 9 French (1982), 645-669. | MR | Zbl
[7] Derridj, M.: Regularité pour $\bar\partial$ dans quelques domaines faiblement pseudo-convexes. J. Differ. Geom. 13 French (1978), 559-576. | DOI | MR
[8] Harrington, P. S., Raich, A.: Closed range for $\bar\partial$ and $\bar\partial_b$ on bounded hypersurfaces in Stein manifolds. arXiv:1106.0629 (2011). | MR
[9] Ho, L.-H.: $\bar\partial$-problem on weakly $q$-convex domains. Math. Ann. 290 (1991), 3-18. | DOI | MR | Zbl
[10] Hörmander, L.: $L^2$ estimates and existence theorems for the $\bar\partial$ operator. Acta Math. 113 (1965), 89-152. | DOI | MR
[11] Kohn, J. J.: Harmonic integrals on strongly pseudo-convex manifolds. II. Ann. Math. (2) 79 (1964), 450-472. | DOI | MR | Zbl
[12] Kohn, J. J.: Harmonic integrals on strongly pseudo-convex manifolds. I. Ann. Math. (2) 78 (1963), 112-148. | DOI | MR | Zbl
[13] Morrow, J., Kodaira, K.: Complex Manifolds. Athena Series. Selected Topics in Mathematics. Holt, Rinehart and Winston, New York (1971). | MR
[14] Saber, S.: The $\bar\partial$-problem on $q$-pseudoconvex domains with applications. Math. Slovaca 63 (2013), 521-530. | DOI | MR
[15] Saber, S.: Solution to $\bar\partial$ problem with exact support and regularity for the $\bar\partial$-Neumann operator on weakly $q$-convex domains. Int. J. Geom. Methods Mod. Phys. 7 (2010), 135-142. | DOI | MR
[16] Sambou, S.: Résolution du $\bar\partial$ pour les courants prolongeables définis dans un anneau. Ann. Fac. Sci. Toulouse, Math. (6) 11 French (2002), 105-129. | MR
[17] Shaw, M.-C.: Local existence theorems with estimates for $\bar\partial_b$ on weakly pseudo-convex CR manifolds. Math. Ann. 294 (1992), 677-700. | DOI | MR
[18] Zampieri, G.: Complex Analysis and CR Geometry. University Lecture Series 43 American Mathematical Society, Providence (2008). | DOI | MR | Zbl
Cité par Sources :